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Analysis and design of polygonal resistors by conformal 
mapping 
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I. Introduction 

In integrated circuitry and elsewhere in electronics, the electrical resistance 
of a polygonal circuit element or pathway is often physically important [7]. In 
the simplest problem of resistor analysis, a polygon is given and its resistance 
must be determined. In the simplest problem of resistor design, a desired resis- 
tance is given and a corresponding polygon must be selected from a family of 
candidates parametrized by some geometric quantity. Of course one could 
devise mathematically equivalent problems involving heat conduction, ideal 
fluid flow, magnetostatics, etc. Questions connected with electrical capacitance 
are also closely related. In problem-independent terminology, we are concerned 
here with the conformal modulus of what is sometimes called a polygonal quadri- 
lateral [1, 4]. 

The resistance is a global quantity depending on the solution of a simple 
boundary value problem for Laplace's equation, and as a result it is invariant 
under a conformal map. (Intuitively, a conformal map behaves locally like a 
scale change times a rotation, and both of these preserve resistance.) Therefore 
one way to perform a calculation of this sort is by constructing a conformal map 
onto a new domain where the problem is trivial - a rectangle. If the resistor is 
polygonal, this map can be written as a composition of Schwarz-Christoffel 
transformations. 

Conformal mapping methods for resistor analysis on polygons have been 
proposed before [13, 14]. Their practical implementation, however, usually re- 
quires the numerical solution of a Schwarz-Christoffel "parameter problem," 
which has only recently become feasible for general polygons [9, 10]. A Fortran 
package for such computations called SCPACK is available from the author 
[11]. Section 2 gives examples of high-accuracy resistance computations based 
on SCPACK. 
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Conformal mapping methods for resistor design have perhaps not been 
discussed previously. The main purpose of this paper, carried out in Sec. 3, is to 
show that design can be accomplished at roughly the same cost as analysis by 
formulating an appropriate "generalized parameter problem." For definiteness 
we consider a particular problem of "resistor trimming," in which the aim is to 
cut a slit in a resistor of such a length as to increase its resistance to a prescribed 
value. This idea is of some practical importance in integrated circuit manufac- 
ture, for it is difficult to fabricate integrated circuit wafers containing resistance 
elements accurate to high tolerances. Instead, one can design the wafer so that 
the resistance is 10% or so too low, and then tune it to the desired value by 
cutting a slit with a laser. The mathematical problem of predicting the appro- 
priate slit length has been attacked previously by other methods [3, 6]. 

The Schwarz-Christoffel approach to Laplace-related calculations on poly- 
gons has the virtue that unlike methods based on integral equations, finite 
differences, finite elements, or the superposition of particular solutions, it preser- 
ves the property inherent in the problem of having only a finite number of 
parameters. In particular it automatically obtains the correct singularities at 
corners. Because of this, the Schwarz-Christoffel method can achieve very high 
accuracy without much penalty in execution time, as our examples will show. 
(For low accuracy, other methods may be better; see [5] for a description of a 
highly effective method based on breaking the domain up into simple subpoly- 
gons.) Its chief drawback is that it generalizes poorly to related problems involv- 
ing more complicated differential equations (e. g. variable coefficients or nonzero 
righthand side) or geometries (e. g. curved boundaries or multiple connectivity). 

The idea of a generalized parameter problem is applicable in a wide variety 
of Schwarz-Christoffel computations, of which our resistor trimming problem is 
only the simplest example. Some other examples are mentioned in Sec. 4. 

2. Analysis 

Let P be a polygon with N _> 4 vertices wl  . . . .  , WN, and let flk rc denote the 
external angle at vertex Wk. See Fig. 1. Let a, b, c, d be four distinguished vertices 
in counterclockwise order, and let F~ and F 2 denote the boundary arcs a - b  and 
c - d .  We wish to calculate the resistance of P, R (P), when voltages V1 and V2 are 
applied on F1 and F 2 and the remainder of the boundary is insulated. Of course 
we are concerned with the idealized problem, not with complications related to 
finite thickness of slits, inhomogeneity, etc. 

Let I be the total current between F~ and F 2. Then R ( P ) =  (V 2 -- VO/I. 

Mathematically, the problem is to solve Laplace's equation, V 2 V = 0, subject to 
Dirichlet boundary conditions V = Vk on F~ and Neumann conditions ~V/~n = 0 

on the remainder of the boundary. Once this is done, R (P) might be computed 
by evaluating I as a line integral of VV along a curve running from one insulated 
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Figure 1 
Conformal map of a polygon onto an equivalent rectangle. 
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boundary component to the other. However, a conformal map will make this 
unnecessary. Suppose a map h is found that carries P onto a rectangle Q in such 
a way that h (F~) and h (F2) are two opposite edges of Q, as in Fig. 1. Let these 
edges be considered the ends of Q, with length W, and let the other two edges 
be considered its sides, with length L. If we normalize by letting a square have 
resistance 1, then obviously Q has resistance L/W. Therefore R (P) = L/W also. 

Since R (P) is a unique number, it cannot be possible to map P in this fashion 
onto an arbitrary rectangle. In fact, P can be mapped onto precisely those 
rectangles with length-to-width ratio L/W. This is consistent with the Riemann 
mapping theorem, which states that a given simply connected region can be 
mapped onto any other (provided neither is the entire plane), but than the 
images of no more than three boundary points can be chosen arbitrarily in the 
process. Here we are prescribing the images of four rather than three boundary 
points, and this extra condition gives rise to the L/W restriction. 

The map h can be constructed as the composition of one (inverse) Schwarz- 
Christoffel map f from P to the unit disk D and another Schwarz-Christoffel 
map g from D to Q. Consider first the map f. The Schwarz-Christoffel theorem 
asserts that f - 1  has the form 

z N 

f - l ( z )  = wc + C ~ I-[ (1 -- (/zk)-:~d~ (1) 
O k = l  

for some complex constants wc and C and some prevertices z~ =f(wk) with 
IZkl = 1, but the values of all of these constants are a priori unknown [8]. The 
problem of determining them is the Schwarz-Christoffel parameter problem. If 
parameter values are chosen arbitrarily, then in general (1) will define a map of 
D onto a polygonal region with the same angles as P but with different side 
lengths. The SCPACK package deals with the parameter problem by setting 
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up a nonlinear system of equat ions embodying  the condit ions that  the side 
lengths come out  right. The unknowns  in this system are the prevertices Zk, or 
more  simply their arguments  O k = arg z k. 

Unknown:  N prevertex arguments  O k = arg Zk, 1 _< k < N ;  

Known:  N side lengths ~ (1 - ~/z~)-~Jd~ = lwk+l - WkJ, 
zk j = l  

1 _<k_<N. (2) 

S C P A C K  then applies a robust  nonlinear equat ions solver (NS01A, by 
M. J. D. Powell) to adjust {0h} iteratively until (2) is satisfied. Of  course we are 
glossing over many  details, in part icular the process of numerical  integration; see 
[10]. 

Once the parameter  problem for f has been solved, the distinguished prever- 
tices a', . . .  d' on the unit circle are known.  To map D onto  a rectangle Q, one now 
applies a second Schwarz-Christoffel formula:  

9 (z) = i [(C - a') (~ - b') (C - c') (C - d')]- 1/2 d C. 
0 

(3) 

(The constants  wc and C have been omitted, since they affect only the scale and 
posi t ion of Q.) This time there is no parameter  problem, because it is the 
prevertices rather than the image polygon that are given. The resistance can be 
evaluated at the cost of three integrals of type (3): 

L ]g (c') -- 9 (b')] 
R ( P )  - W - 19 (b ' )  - g (a' )J  " ( 4 )  

The map g is essentially a Jacobi  elliptic funct ion.  One can take advan- 
tage of the great amoun t  that  is known abou t  these functions to simplify the 
computa t ion  (4). (The benefit of doing so is more  esthetic than practical, 
since most  of the work  comes in comput ing  f, not  9.) Given a ' , . . . ,  d', let 
their cross ratio Z e ( - 0 %  0) and a real parameter  k e (0,1) be defined by the 
formulas 

(b' - a') (d' - c') 

)~ = (c' - b') (a' - d ' ) '  

k = 1 - 2 (Z + 4 U -  Z). 

(5) 

(6) 

Then (4) can be rewritten as a ratio of complete elliptic integrals [8] 

2 K ( k )  
R (P) - K (x/1 -- k2) " (7) 
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The function K (k) can be computed extremely rapidly through the use of a 
well-known iteration involving arithmetic and geometric means: 

~ :=  1, fl:= k 

repeat until a ~ fi: 

a ' : =  (a +/3)/2 

/3'.= , f i  +/3 (8) 
a:= ~', /3:=/3' 

K : =  o~ 

This completes our description of resistor analysis by means of the Schwarz- 
Christoffel transformation. In summary, given a polygon P, here is the proce- 
dure: 

Resistor analysis algorithm 

(i) Call S C P A C K  to solve the parameter problem (2) for  the prevertices {zk} of  
the map f ,  and in particular to obtain the distinguished prevertices a', . . . ,  d' ; 

' . . . ,  d '  (ii) Insert a ,  in (3)-(4) or (5)-(8) to determine R(P);  
(iii) As desired, call S C P A C K  to evaluate h or h-1 at various points from (3) and 

(l) for  plotting or other purposes. 

Figure 2 shows four examples of successful resistance calculations with 
SCPACK. (All of our calculations were performed on a VAX 780 running Unix 
Fortran 77 in double precision.) Each part of the figure lists the resistance R 
obtained numerically, probably accurate to all 12 places given, and plots 11 
eqnipotential and stream lines obtained by mapping a rectilinear grid in Q back 
to P. Note that these families of curves divide P into subregions that approxi- 
mate rectangles of length-to-width ratio R. The polygons treated can be de- 
scribed as follows. 

(a) Regular pentagon. Here the parameter problem for f is trivial - one can 
take equally spaced prevertices. The computation did not take advantage of 
symmetry. 

(b) L-shaped hexagon. Each leg has width 1, outside length 3. Again the 
computation did not take advantage of symmetry. Note that the influence of 
the corner is obviously very weak near the ends. In fact by considering the 
conformal map of a straight infinite strip onto an infinite strip with a 90 ~ corner 
in it, one can show that for L-shaped regions whose side length is an integer l, 
the fractional part of the resistance approaches 1 - 2 In 2/re ~ 0.55872880 expo- 
nentially as l ~ oo. The value for 1 = 3 in Fig. 2 b already matches this to six 
places. 
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(c) Irregular lO-gon. The vertices are located at - 4  + i, - 4 - 3 i, - 2 - 3 i, 
- 2  - 2 i ,  - 2 i ,  - 0 . 6  - 3i, 3 - 4 i ,  5, 4 + 3i, and i. 

(d) Symmetrical domain with internal contacts. This region is multiply con- 
nected, with all side lengths equal to 1, 1/2, or 1/4. We treat it by considering the 
quarter domain, an asymmetrical but simply connected 10-gon. 

To estimate efficiency, it is convenient to take advantage of the fact that 
most of the computer time in all SCPACK computations goes to the repeated 
calculation of logarithms of complex numbers needed for evaluating the 
Schwarz-Christoffel integrand (1). The approximate number of logarithms re- 
quired for each computation is listed in Fig. 2. (These figures do not include the 
somewhat larger numbers needed for plotting.) On typical machines these loga- 
rithm counts correspond to cpu times of a few seconds. Roughly speaking, they 
increase in proportion to the cube of the number of vertices [10]. 

3. Design 

Again let P be a polygon as in the last section, with resistance R (0). Let e 
denote some point on the insulated boundary of P beginning at which a straight 
slit of length s > 0 has been cut in some fixed direction into P. (See Fig. 3.) 
Physically, the slit is a perfect insulator. Mathematically, it consists of two extra 
sides to the polygon (which happen to coincide) added to the part of the bound- 
ary where the Neumann condition is applied. Let P~ denote the slit polygon, with 
resistance R (s). Obviously R (s) is a monotonically nondecreasing function of s, 
and if the slit is oriented in such a way that for s > s o it cuts P into two halves, 
each containing one of the boundary arcs F k, then R (s) = ~ for all s > so. 

Here is our inverse problem. 

a 

b 

d 

C 

Figure 3 
Polygon with a slit in it. 

h 
f ----_> 
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Resistor trimming problem 

Given R o > R (0), f i nd  So such that  

R (So) = Ro. (9) 

For any fixed s, Ps is a polygon whose resistance can be evaluated by solving 
a Schwarz-Christoffel parameter problem as in Sec. 2. In other words, we know 
how to evaluate the nonlinear function R (s) numerically, and this ability could 
be used as the basis of an iterative solution of (9) [12]. However, the point of this 
paper is that one can do better. Let P~ have N vertices wa . . . .  , wN, including the 
following three which define the slit: 

w j _  1 = e, w s = end of slit, ws+ 1 = e.  

The resistor trimming problem contains the following N known quantities: 
N - 1 vertices w k (k ~ J); 1 resistance R o. Clearly it is most natural to combine 
precisely these conditions into a single nonlinear system of equations, rather 
than artificially treat wj instead of R o as known and then be forced to iterate. 
Reducing to real variables as before, we obtain the following genera l i zedparame-  
ter prob lem for resistor trimming. Compare with the standard parameter prob- 
lem (2). 

Unknown:  

K n o w n :  

N prevertex arguments Ok = arg Zk, 1 <__ k <_ N ; 

N - 2  
zk+ 1 

side lengths C ~ . . . .  [Wk+I--Wk[, 
Z k  

z j  . . 

1 additional side length condition C S �9 
zj- 1 

k • J - - 1 ,  J ,  

(10a) 
Z J +  1 

= C S . . - ,  
Z J  

(10b) 

1 resistance condition R = R o. (10c) 

Once the generalized parameter problem has been formulated, all that 
remains in principle is to solve it numerically. We will again skip over most of 
the details, except for two important ones that are worth mentioning. 

The first concerns implementation of (10c). At any step in the iterative 
solution of the parameter problem, a set of trial values {Ok} and in particular 
a', . . . ,  d' is in hand, and one must determine how nearly (10c) is satisfied. The 
direct approach would be to calculate the resistance R (a ' , . . . ,  d') by (3)-(4) or by 
(5)-(8). However, a more elegant method consists of computing the elliptic 
integrals once and for all in advance. Given Ro, begin by determining the 
corresponding prescr ibed  cross ratio Zo. This can be done by calling SCPACK 
to solve a (standard) parameter problem for a rectangle with L / W  -- R ,  or by 
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performing a secant iteration based on (3)-(4) or (5)-(8), or by applying the 
following formulas inverse to (6)-(8)[8]: 

k = 4 x/q n = l  1 -t- q 2 . - 1  ' q ----- e -2n/R, (11) 

- 1  . (12)  

Once •o is known, one can discard R o and use )~0 in the main iteration. Actually 
it is better to work with log IZol, since I)~1 decreases exponentially as R ~ ~ .  
Thus (10c) is replaced by 

1 cross ratio condition log I)~l = log Ixol. (10c') 

The second important detail is that in both (2) and (10), we have ignored the 
fact that a conformal map contains three arbitrary parameters. This means that 
N equations as in (2) or (10) cannot fully determine all of the arguments {Ok}, but 
only N - 3 relations among them; conversely, there must be three degrees of 
redundancy in these equations. We have avoided discussing this issue because 
there are many different ways to resolve it, and because the details are straight- 
forward but tedious. However, the de[ailed formulation of the parameter prob- 
lem will of course determine exactly how it changes when generalized for resistor 
trimming. In the particular formulation chosen in SCPACK, it happens that 
not N but N -  2 side length conditions (2) are enforced, namely those with 
k ~ N - 2, N - 1 [10]. The remaining two side lengths come out right automati- 
cally because of elementary geometry. To adapt this formulation to the slit 
resistor problem, one can first number the vertices so that J = N - 1, then 
simply enforce only N - 3 side length conditions k r N - 3, N - 2, N - 1. The 
geometry forces (10 b) to be satisfied automatically, so this condition never needs 
to be imposed explicitly. 

This completes our description of resistor design by means of the Schwarz- 
Christoffel transformation. In summary, given a class of slit polygons {Ps} and 
a desired resistance Ro, here is the procedure: 

Resistor design algorithm 

(i) Compute the prescribed cross ratio )~o by a secant iteration or by (11)-(12); 
(ii) Call an appropriately modified version of  S C P A C K  to solve the generalized 

parameter problem (10); 
(iii) Call S C P A C K  to evaluate h or h-1 as desired. 

Figure 4 shows four examples of resistor design calculations, as follows: 

(a) Diamond with transverse slit. The diamond has width 2, height 1. 

(b) Square with slit down the middle. Each side has length 1. 
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Four slit resistors. 
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(c) Region of Fig. 2c with vertical slit added. Note how long a slit must be cut 
to bring the resistance up from 2.06 to 3. 

(d) L shape. Each leg has width 1 and outside length 2. The slit begins at the 
reentrant corner. With no slit, the resistance would be x/~ [4]. 

In these resistor trimming computations, SCPACK again reliably obtains 
answers accurate to high precision, as indicated. The costs measured in loga- 
rithms are comparable to those listed in Fig. 2 for resistor analysis. 

4. Further applications of generalized parameter problems 

In many possible applications of Schwarz-Christoffel maps - perhaps most 
- one is not simply given a polygon whose properties require investigation. 
Rather, one is given a problem whose solution involves a polygon whose geome- 
try must be determined as part of the computation. The connection of the 
problem with the polygon may be only implicit, and well disguised. 

To find simple examples we can vary the theme of a slit resistor. One might 
have an L shape as in Fig. 2 b of known length but unknown width, and wish 
to determine what width is needed to bring the resistance down to a specified 
level. (This is an idealization of a timing question for integrated circuits.) One 
might want to vary the angle of the L to achieve a desired property. And so on. 

More generally, a wide variety of Laplace equation problems involving 
piecewise-constant boundary conditions can be solved by viewing the unknown 
solution ~o as the real part of an analytic function f In this process a Dirichlet 
condition q~ = const., for example, becomes a condition Re f = const., which 
amounts to specifying the horizontal position of a side of a polygon, but not its 
length. By proceeding in this way one obtains generalized parameter problems 
involving a mixture of known coordinates and unknown slit lengths. Details for 
one problem of this type, in which the generalized parameter problem turns out 
to be linear, can be found in the section on the Hall Effect in [15]. 

A particularly interesting situation appears in applications of conformal 
maps to two-dimensional free-streamline problems for jets, wakes, and cavities 
by the classical hodograph method [2, 16]. It is well known that this method 
reduces an idealized free-streamline problem to a conformal mapping problem 
involving a polygon in the log-hodograph plane. But it is rarely emphasized in 
the literature that only in special cases are the dimensions of this polygon spe- 
cified a priori. Much more often, some of them are unknown, but must be chosen 
properly in order that certain dimensions in the physical plane come out right. 
Again one gets a mixture of geometric conditions in several different planes. 

In these and analogous examples, Schwarz-Christoffel mapping is revealed 
as a broader problem than just the treatment of prescribed .polygons. In each 
case the procedure for obtaining a solution is to first give careful thought to 
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specifying exactly what unknown parameters exist and what mathematical facts 
are known that determine them uniquely. This collection of knowns and un- 
knowns constitutes a generalized parameter problem. If this is formulated in a 
natural way, there is a good chance it can be solved by a general-purpose 
program for nonlinear systems of equations. 
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Abstract 

To compute the electrical resistance ( ~ conformal modulus) of a polygonally shaped resistor 
cut from a sheet of uniform resistivity, it suffices to find a conformal map of the polygon onto a 
rectangle. Constructing such a map requires the solution of a Schwarz-Christoffel parameter prob- 
lem. First we show by examples that this is practical numerically. Then we consider an inverse 



704 Lloyd N. Trefethen ZAMP 

"resistor trimming" problem in which the aim is to cut a slit in a given polygon just long enough 
to increase its resistance to a prescribed value. We show that here the solution can be obtained by 
solving a "generalized parameter problem." The idea of a generalized parameter problem is applica- 
ble also in many other Schwarz-Christoffel computations. 

Zusammenfassung 

Um den elektrischen Widerstand eines polygonalen Resistors aus einem Material homogener 
Leitf/ihigkeit zu berechnen, geniigt es, eine konforme Abbildung des Polygons auf ein Rechteck zu 
finden. Die Konstruktion einer solchen Abbildung erfordert die L6sung eines Schwarz-Christof- 
felschen Parameterproblems. Wir zeigen zun/ichst anhand yon Beispielen, dab dies numerisch 
durchfiihrbar ist. Dann betrachten wit ein inverses Problem: Die Aufgabe besteht hier darin, einen 
Schlitz in ein gegebenes Polygon zu schneiden, dessen L/inge gerade so gew/ihlt ist, dab der Wider- 
stand auf einen vorgegebenen Wert erh6ht wird. Wir zeigen, dab dieses Problem auf ein 
,,verallgemeinertes Parameterproblem" zuriickgeffihrt werden kann. Die Idee des verallgemeinerten 
Parameterproblems ist auch auf viele weitere Schwarz-Christoffel-Probleme anwendbar. 
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