Introduction to Fan-Out Wafer Level Packaging

Beth Keser Qualcomm Technologies, Inc.

IW LPC 2015- San Jose, CA, USA

October 15, 2015

Outline

- <u>Current Challenges in Packaging</u>
- FOWLP Definitions and Advantages
- Process
- Applications
- Package Structures
- <u>Material Challenges</u>
- Equipment Challenges
- <u>Die Drift</u>
- Design Rules
- Reliability
- <u>Roadmaps</u>
- Panel
- Benchmarking

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

October 15, 2015 2

2

Technical Challenges of Packaging

Technical Challenges of Packaging

Beth Keser, Ph.D.

- Ultra thin die (<150µm)
- CTE Mismatch
- Warpage Control
- Preserving Si Strain Engineering

October 15, 2015 6

VLPC 2015, San Jose, CA, USA

Technical Challenges of Packaging

Technical Challenges of Packaging

Beth Keser, Ph.D.

- Signal Integrity
- Power Distribution
- Functional Partitioning

October 15, 2015 8

LPC 2015, San Jose, CA, USA

October 15, 2015 9

Decrease in Handset Thickness Over Time

Beth Keser, Ph.D.

Height Comparison of Mobile Packages

IWLPC 2015, San Jose, CA, USA

Definition

- Embedding known good die (KGD) into mold compound or substrate
- Building up interconnect layers from die to BGA balls on mold compound or substrate

Beth Keser, Ph.D.

"Fan-out WLP or FOWLP" "Chips First" "extended Wafer Level BGA or eWLB" "Redistributed Chip Package or RCP" "M-Series" "Integrated Fan-Out"

VLPC 2015, San Jose, CA, USA

Typical FOWLP Process Flow

Typical FOWLP Process Flow

Flip reconfigured wafer	
 Photoimageable Polymer1: Coat, expose, develop cure Redistribution Layer (RDL1): Sputter, coat resist, expose, develop Plate, strip resist, etch, descum	
 Photoimageable Polymer2: Coat, expose, develop cure, descum	Keser, Freescale, IEEE Trans vol 31, 2008.
 Ball Attach	Fan-OutAres Chip
Package Singulation	Interconnect (Solder ball) Redistribution

Packaging Process Flow Comparison

FOWLP Advantages

- Eliminates die interconnect (bump and wirebonds) and substrate
 - Excellent Electrical Performance
 - Shorter interconnects = Lower parasitics
 - Eliminate interconnect stress and ELK (extreme low dielectric constant) crack delamination issues

Beth Keser, Ph.D.

- Fine Line/Space (L/S) for better routability
- · Finer pad pitch on die than flip chip
- Thin package, Smaller Form Factor
- Potential SiP, Multi-die, 3D Solution
 - High integration
 - Heterogeneous chips + passives

3D FOWLP Advantages

- · Eliminates warpage and coplanarity issues
- PoP Height reduction
- Eliminates stress on die from Pb-free bump
- Thicker die allowed

Courtesy of ASE

/LPC 2015, San Jose, CA, USA

FOWLP Disadvantages

- Capacity
- Yield
- Probe of bare die for KGD needs to be enabled
- Chips First
 - Committing chip to package
 - Other packaging uses KGD with Known Good Substrate
- Design not flexible
 - Design for FOWLP to take advantage of short interconnects
 - Cannot be re-used in WB or FC part without redesign

Wafer Level Packaging

Applications: Enables Larger WLP

Beth Keser, Ph.D.

WLPC 2015, San Jose, CA, USA

October 15, 2015 22

October 15, 2015 23

Applications: Coarser Pitch WLP

Beth Keser, Ph.D.

- Repackage WLP for applications that require coarser pitch
- Fast to market WLP with coarser pitch

IWLPC 2015, San Jose, CA, USA

• Fan-out offers smaller package size and lower cost

Applications: Thin Package

Applications: Multi-die Module

• Modules with smaller footprint

- Minimizing spacing between die and die to package edge.

Application: Multi-Component RF Modules

- Integrated chips & passives for front-end module (FEM).
 - Multi-die and passive integration
 - Multi-layer redistribution layer (RDL) allows interconnection
 - Inductors in RDL
 - Sputtered or plated shielding

Applications: SiP Package Shrink

- 15x15 multi-die FOWLP enables products that demand higher pin count (up to 1000) and higher integration

 e.g. baseband module
- Reduces baseband module form factor by 55% in thickness and 40% in package area

Applications: Package on Package

- Eliminates warpage and coplanarity issues

 No substrate
- PoP Height reduction
- Eliminates stress on die from bump interconnect

Beth Keser, Ph.D.

MULLER.
- Com

WLPC 2015, San Jose, CA, USA

October 15, 2015 28

Application: High Density Die-to-Die (D2D)

- · Fan-out on substrate
- Mobile phone/Tablet, AP/Baseband + RF/Analog, PMIC, Lowend CPUs, GPUs
 - Shorter die-to-die (D2D) connect for good electrical performance
 - High IO (input/output)
 - Fine L/S (2/2)
 - No interposer lowers cost

Applications: Split die For next generation application processor - Split analog and digital portions of die into 2 die nodes (e.g. 16nm/10nm) - Create die to die connections (D2D) in FOWLP package Benefit - Lowers cost - Development Wafer cost - Higher fab yields Faster time to market Digital (advanced) SoC Solution Split Die Solution Analog (legacy) Good Per for mance Good System Cost & Form Factor & Time to Market EPII. Beth Keser, Ph.D. October 15, 2015 30 WLPC 2015, San Jose, CA, USA

Application: Automotive

eWLB Process Flow

eWLB Licensees

- STATSChipPAC
- Nanium
- ASE
- IFX also has eWLB internal manufacturing capability on 200mm line in Germany

Beth Keser, Ph.D.

/LPC 2015, San Jose, CA, USA

October 15, 2015 34

Nanium Product Examples Active and Passive Integration in eWLB 8.7 x 7.9 mm² package size • WLSIP with 2 active die • 10 passives (0201) 2L-RDL . 11 After Wafer Molding **FFFF** After Pick&Place naniur WLPC 2015, San Jose, CA, USA Beth Keser, Ph.D. October 15, 2015 36

Freescale's Redistributed Chip Package (RCP)

Beth Keser, Ph.D.

- Freescale proprietary technology
- Scalable, fan-out chip scale package
- · A technology solution for:
 - Small form factor packages
 - High performance
 - Multi-die, heterogeneous integration
- 2D, 3D System in Package (SiP) solution
- Key applications
 - Medical
 - Defense
 - Migrate to consumer, industrial and auto

WLPC 2015, San Jose, CA, USA

Freescale's Redistributed Chip Package (RCP)

DECA Technologies' M-Series

• Die encased in mold compound

WLPC 2015, San Jose, CA, USA

- Cu bump interconnect to fan-out structure
- Adaptive Patterning[™] to address die shift

Beth Keser, Ph.D.

Solar-based processes and equipment

DECA's M-Series Process Flow

Wafer Prep 💻	→ Panelization	Fan-out	Package Finishing
Cu Pillar Pattern and Plate	Singulation Die Attach to Carrier Molding Panel Front Grind Die Location Meas.	Polymer Coat, Pattern, Cure RDL Pattern and Plate Polymer Coat, Pattern, Cure UBM Pattern and Plate Ball Drop and Reflow	Panel Backgrind Backside Coating Laser Mark, Saw, Tape and Reel (TnR)
-			
1	Rogers, W	LPC 2013	Deca Technologies
IWLPC 2015, San Jose, CA, USA	Beth Keser	, Ph.D.	October 15, 2015 41

DECA's M-Series with Adaptive Patterning

- Rugged fan-out package with fully encapsulated option
- Planar patterning surface to enable advanced geometries
- Improved reliability for larger silicon devices
- Adaptive patterning to enable high yields on fine pitch bond pads
- Capable across wide range of IC device types
- Low cost with high speed die attach and solar wafer fab inspired Autoline

IWLPC 2015, San Jose, CA, USA

Scanlan, IWLPC, 2012 Beth Keser, Ph.D.

DECA's Adaptive Patterning Methods

Adaptive Routing

 Dynamically adapt RDL routing to accurately align to true die position

- · BGA array fixed to package outline
- Enables multi-die fan-out

PC 2015, San Jose, CA, USA

S

Adaptive Alignment

· Align the entire RDL layer to true die position within the unit

- · Enables high metal density designs
- · Precise alignment of inductors to die Deca Technologies

canlan,	IWLP	C,	2012	
		Beth	Keser, Ph.D.	

October 15, 2015 43

TSMC's Integrated Fan-Out (InFO)

- Ultra fine pitch RDL (L/S down to 2/2um)
- 15mm x 15mm package size for single die

- 8mm x 8mm package size with 4 chips
- Ultra-high Q (~60) built in inductor
- Ultra-thin (0.45mm) package
- Supports PoP
- Seamless chip-package co-design

SPIL's Single Die Fan-Out (SDFO)

- Dry film lamination encapsulant
 Requires thin die (50um)
- Si carrier becomes part of package
 - Reduces warpage (empirical and simulation)
- Improved solder joint life (TC and Drop) (simulation only)
- Passed thermal cycles on board (TCoB) and Package level rel

IWLPC 2015, San Jose, CA, USA

Hsu, ECTC, 2012 October 15, 2015 45

SPIL's Single Die Fan-Out (SDFO) SPIL Test Vehicle Backside Silicon 340 um Backside Silicon Encapsulation Die 50um Bump Pad Encapsulation 180 um ___ / _____ RDL LTP = Low Temperature Cure Polymer e Pi Beth Keser, Ph.D. WLPC 2015, San Jose, CA, USA 15, 2015

Beth Keser, Ph.D.

SPIL's Through Package Interconnection Fan-out (TPI-FO)

SPIL's Multi-Chip Module Fan-Out (MCM-FO)

October 15, 2015 49

Embedded Die in Panel

- Applications
 - Low IO count devices
 - uDCDC, Audio, Power Management, Charging, Envelope Tracking
- Challenges
 - Supply Chain
 - Standardization
 - Volume to drive low cost
 - Coarse L/S

LPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

J-Devices Panel Level Package (PLP)

AT&S Embedded Component Package (ECP®) Process Flow

AT&S Embedded Component Package (ECP®)

ECP® Stack ups

FCI Fujikura ChipletT & Fujikura WABE

Fujikura Wafer And Board level device package (WABE)	Embedded
 Based on flexible, not rigid, board technolo Roll to roll process Semi-additive plated Cu 20/20 L/S 	Cu toil Polyimide Cu etching
Copper circuit (10 ~ 20μm) (85μm) Conductive paste via	Adhesive Adhesive lamination Via hole Via hole opening paste IVH Conductive paste printing
Polyimide film (20 ~ 50 μm) Solder Ball	
(1) Ultrathin WLP(2) Flex based multilayer wiring board(3) Interstitial Via Hole filled by Conductive paste	IC die Vacuum hot press
Okude, Semicon West, 2012 WLPC 2015, San Jose, CA, USA Beth Keser, Ph.D.	Bumping, marking, singulation

28

Other Technologies

 Renesas (formerlyNEC) SMAFTI (SMArt chip connection with Feed Through Interposer)

Epoxy Mold Compound Challenges for FOWLP

Beth Keser, Ph.D.

- Cost
- Low temperature cure
 - Lower than release temperature of debond tape
- Cure Time/Cycle Time – Short time in mold required
- Die drift – Minimal cure shrinkage
- Warpage
- Flow Marks/Fill

Designing EMC for FOWLP

EMC Challenges

Challenge		Warpage	Warpage Flow mark	
Carrier size	Bigger	Bigger	Worse	Worse
	Smaller	Smaller	Better	Better
Mold thickness	Thicker	Bigger	Better	Better
	Thinner	Smaller	Worse	Worse

VLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

October 15, 2015 64

EMC Challenges

• Liquid vs. Solid EMC

Туре	Cost	Viscosity	Handling	Cure Shrinkage	Floor/Shelf Life
Liquid	+	+++	+++	+	+
Solid	++	+	++	+++	+++

Liquid

- Good flowability/viscosity \rightarrow Less voids, better fill, less flow marks
- Better handling \rightarrow No particles
- Solid
 - Less Cure shrinkage → Better stand off, less die drift

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image>

Time in Mold

- Gel time is the time required for a thermosetting mold compound to effectively solidify at the molding temperature
- · Gel time must be reached in mold before transfer to PMC

Hitachi	ΤV			
	Resin	Chip	Adhesive film	
_	Carrierr			
	lt	tem	Condition	
	Chin	Size	7x7x0.4mm	
	Chip	Number of amount	400	
	PKG	Size	8x8x0.5mm	
	Adhesive film	Thickness	100um	
	. .	Diameter	8 inch	
	Carrier	Thickness	2mm	
		Mold size	200mm	
		Thickness	0.5mm	
	Molding	Clamping force	100kN	
	condition	Temp. & Time	125degC/300sec	
		Post Mold Cure	150degC/1hr	
1				Hitachi Chemicai Werking On Wenders
IWLPC 2015, San Jose, CA, U	JSA	Beth Keser, Ph.D.		October 15, 2015 69

Warpage Relaxation ("Repair Process")

Repair process Molded samp More than To	le quench	egC Molded sample
	Warpage(mm)	
	After PMC	
	With repair process	0.10
4002064000	No treatment	1.05

Beth Keser, Ph.D.

- Relaxation occurs during anneal treatment
- Warpage is reduced >900µm

IWLPC 2015, San Jose, CA, USA

Warpage Relaxation with Repair Process

Warpage flat with anneal treatment throughout FOWLP
 process

1	IRR = Reflow	Hita chi Chemicai Wa kilong On Wa rates	
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 71	

Warpage without Repair Process

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

October 15, 2015 72
Warpage with Repair Process

Warpage Correction can minimize final panel warpage

October 15, 2015 74

		I SUMITOMO BAKELITE CO	. LTD.
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015	73

EMC Material Properties

	Hitachi	Nagase	Panasonic	Sumitomo
Material	Solid	Liquid	Liquid	Solid
Filler Loading (w t%)	85	89	88	90
Maximum Filler Size (µm)	54	75	25	55
Viscosity (Pas)	NA	600	300	NA
Mold Condition	10 min / 125ºC	10 min / 125ºC	10min / 125ºC	7 min / 125ºC
Post Cure	1 hour / 150ºC	1 hour / 150°C	1 hour / 150°C	1 hour / 150°C
Tg (°C)	160	165	150	170
Flexural Modulus (GPa)	23.5	22	22.5	30
CTE1 (ppm/°C)	7	7	10	7
CTE2 (ppm ^o /C)	26	30	40	28

Beth Keser, Ph.D.

Dielectric Material Challenges for FOWLP

- Cure temperature - <230°C due to molded wafer
- · Low warpage
 - Low film stress
 - Low Elastic modulus
- Reliability
 - Low modulus
 - High elongation
- Chemical Resistance
- Adhesion
- Planarization
- Via resolution

Dielectric Process Flow (Positive material)

Beth Keser, Ph.D.

Material Characteristics

Designing a Low Temp Cure Phenolic Resin

Chal	lenges of Low-Cure Photoimageab	le Dielectric Design
	Dispense Volume Coating Uniformity Film Thickness Range	
Process conditions	Photospeed Resolution Particle Defectivity Purity Cvcle time	
Material Properties	Thermo-mechanical Properties (Tg, CTE, Mechanical Properties (E, elongation, str Electrical Properties (dielectric constant a Chemical Resistance Adhesion	E, w t% degradation) ength) and dielectric loss)
FO-WLP Compatibility	Spin-coating Exposure Type (broadband, i-line, laser) Warpage Thermal budget	 EHS Friendly Cost Previous IP

Low Cure Dielectric Properties

	HD4100 (REF)	HD8820 (REF)	JSR WPR-5100	Sumitomo CRC-XXXXX	DOW 8005	Zeon ZC100-T
Polymer	polyimide	PBO	phenolic resin	РВО	BCB	Olefin
Tone	negative	positive	positive	positive	positive	positive
Cure T (°C)	350-390	300-350	200	220	200	180
CTE (ppm/°C)	35	60	50	39	65	51
Elongation (%)	45	100	15	55	28	8
Tg (°C)	325	300	219	283	>300	196
Young's Modulus (GPa)	3.5	2.3	1.8	2.7	2.0	2.9
Tensile Strength (MPa)	200	170	110	124	98	100
Residual Stress (MPa)	34	37	16	25	25	23
Dielectric Constant	3.2	2.9	3.5	3.5	3.0	2.9
Water Absorption (%)	1	0.5	1.3	1.4	1.2	0.18

Beth Keser, Ph.D.

ANTER:

IWLPC 2015, San Jose, CA, USA

Process Characteristics: PBO

С	coating Material		Sumitomo PBO CRC-X2	HDMicrosystems HD8930
Р	rocess	Unit		
	Coating	rpm x sec	800 x 10 + 2310 x 25 + 1500 x 5	3000 x 30
	Prebake	°C x min	125 x 4	120 x 3
	Film Thickness	μm	7.3	7.5
	Exposure	mJ/cm2	420-630 (aligner)	240 (stepper)
	Developer		2.38% TMAH	2.38% TMAH
	Puddle	sec	30	2x30
	Film Thickness	μm	5.8	5.7
	Thickness Loss	μm	1.5	1.8
	Curing	degC x min	200 x 90	200 x 60
С	ured Film Thicknes	s (µm)	5.0	4.9

Beth Keser, Ph.D.

courtesy of Sumitomo, HDM

October 15, 2015 84

Resolution: Sumitomo PBO

5µm thick film 10µm 9µm 7µm 5µm 0 0 0 : 0 0 0 0

Resolution: H	ОМ РВО					
After development (8.4	μ m)	10	8	7	6	5 4 3 21 um
CO 20 After Cure (7.1μm)		0	0 0 0	0000		
30 20 • • •		•	0 0 0			
A De la Carte de l	2um o	pening				Cure: 200C/1hr
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.					HD MicroSystems

Resolution: JSR Phenolic Resin

Mask-CD	3um	5um	8um	10um
After dev.			nunde Californi	
	2.9um	5.1um	8.0um	10.1um
After cure		hh	15	
	3.1um	4.9um	8.1um	10.1um

3um via at 10um cured film thickness.

E CENTRE E		JSR
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 87

Adhesion: Sumitomo PBO										
Adhesion to Subs	t <mark>rate</mark> (JIS D0202)				Knife	-				
100 square pa	tterns was made by Knife									
 Test Condition 										
PBO Thickness : 10)µm (a	after Cu	uring)		H		++-		Bull -	
Test Method : SC	отсн						,h			
(JI	S D02	202)			Ħ			in x mini pu		
PCT : 12	25degC/100%RH Scotch Tape									
HTS : 15	0dC ir	n Air			, n					
Results *										
 Results * 										
Results *			F	ст				н	TS	
Results * Substrate		Si	F	РСТ Си	PBO	/PBO		H' Si	ts C	iu
Results * Substrate PCT or HTS Process (hr)	0	Si 300	F C 0	РСТ Си 300	РВО 0	/PBO 300	0	H Si 300	тs 0	2u 300
Results * Substrate PCT or HTS Process (hr) CRC-X7828 (200dC cure)	0 0⁄100	Si 300 0⁄100	F C 0 0/100	2CT Cu 300 0/100	PBO 0 N.D.	/PBO 300 N.D.	0 0/100	H' Si 300 0/100	TS 0 0/100	cu 300 0/100
Results * Substrate PCT or HTS Process (hr) CRC-X7828 (200dC cure) CRC-X7832 (200dC cure)	0 0/100 0/100	Si 300 0/100 0/100	F C 0 0/100 0/100	2CT Su 300 0/100 0/100	PBO 0 N.D. 0/100	/PBO 300 N.D. 0/100	0 0/100 0/100	H Si 300 0/100 0/100	TS 0 0/100 0/100	Su 300 0/100 0/100
Results * Substrate PCT or HTS Process (hr) CRC-X7828 (200dC cure) CRC-X7832 (200dC cure) *(Number of peel off / Total	0 0/100 0/100 number c	Si 300 0/100 0/100 if squares	F C 0 0/100 0/100)	200 200 200 0/100 0/100	PBO 0 N.D. 0/100	/PBO 300 N.D. 0/100	0 0/100 0/100	H Si 300 0/100 0/100	TS 0 0/100 0/100	Cu 300 0/100 0/100
Results * Substrate PCT or HTS Process (hr) CRC-X7828 (200dC cure) CRC-X7832 (200dC cure) *(Number of peel off /Total PC ⁻	0 0/100 0/100 number c Γ = Ρι	Si 300 0/100 0/100 of squares ressure	6 0 0/100 0/100) e Cool-	200 200 0/100 0/100 0/100	<i>РВО</i> 0 <i>N.D.</i> 0/100	лево 300 N.D. 0/100 6 = Hig	0 0/100 0/100 h Tem	H Si 300 0/100 0/100 0/100 D Stora	7S 0 0/100 0/100 age D BAKELITI	20 300 0/100 0/100 E CO., LTD,

Adhesion: HDM PBO to Hitachi EMC

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

Chemical Resistance: Phenolic resin

Conditions	New
r.t./10min	pass
40°C/10min	pass
r.t./10min	pass
40°C/10min	pass
r.t./10min	pass
r.t./10min	pass
40°C/10min	pass
r.t./10min	pass
40°C/10min	pass
r.t./5min	pass
70°C/5min	pass
r.t./30min	pass
r.t./30min	pass
	Conditions r.t./10min 40°C/10min r.t./10min 40°C/10min r.t./10min r.t./50min r.t./50min r.t./30min r.t./30min

Beth Keser, Ph.D.

LPC 2015, San Jose, CA, USA

- Dielectric Cracking Concern
 - Lack of elongation of dielectric material causes crack during thermal cycle test.
 - Elongation is small during cooling.
 - When multiple thermal deformations become larger than the film elongation, the dielectric cracks.

Beth Keser, Ph.D.

JSR

91

October 15, 2015

Low Cure Dielectric Roadmap

Beth Keser, Ph.D.

C 2015, San Jose, CA, USA

48

96

15, 2015

Advantages of Compression Mold

- Minimum packing pressure
- Thinner and smaller packages
- Minimize mold compound cost, waste, storage
 No runners
- Scales up to large panel size

C 2015, San Jose, CA, USA

• Minimum tooling changes minimizes process disruption

Beth Keser, Ph.D.

October 15, 2015 99

• Release film covers top mold chase – Obsoletes cleaning and conditioning

Compression Molding vs. Transfer Mold

	Compression Mold	Transfer Mold
Compound usage	100%	Around 70%
Reliability, Warpage	Better due to even filler distribution	Filler distribution uneven
Moldability (Thin mold cap and large substrate w/o void)	Very good Scalability	Limited
Flexible Package Thickness	Mold recipe change	Tool change required

Moldability: Thin mold cap and large substrate without voids

Compound flow unbalance

LPC 2015, San Jose, CA, USA

Compression molding

Compound flow-free

- · Transfer Molding takes longer time to fill mold
- · Compression molding pre loaded mold compound enables larger panel molding

Beth Keser, Ph.D.

Moldability (Module device w/o void)

Transfer Mold

Package Thickness Reduction Compression molding Transfer molding Mold gap not necessary Mold gap necessary for compound flow Minimum Mold Gap Minimum 0.02mm -same as Mold Gap fillersize 0.1mm over Die TOWA LPC 2015, San Jose, CA, USA Beth Keser, Ph.D. 15, 2015 105

Beth Keser, Ph.D.

Mold Equipment Challenges

- Capital cost
- Throughput
- Die Drift
- Mold thickness uniformity
- Gap filling
- Handling and dispensing EMC
 Liquid/pellet/granular/powder

Key Tool Characteristics and Capability

Single Wafer Automated FOWLP System

Multi-Press Automated FOWLP System

Multi-Press Automated FOWLP System with PMC

Molding Process Challenges

Challenges	Defects	Root causes	Counter Measures
Void / Incomplete fill		Air trapped in package	 High vacuum to evacuate air from molding chamber Optimize molding parameter
Flow mark		Uneven distribution of filler and resin	 Reduce compound flowing as much as possible Improve consistency in dispense
W arpage		Molding compound and substrate CTE mismatch	 Match CTE between EMC & Substrate Mold at as low as possible temperature
Bleeding		Insufficient clamping area or wrong parameters used	Improve mold designOptimize molding parameter

System Design Challenges

- Press capacity
- Mold coplanarity
- Platen deformation
- Packaging versatility
- Vacuum design

Press Capacity

- In compression molding, mold area is much bigger than clamping area, therefore most capacity goes for resin packing
 - E.g. in 12" wafer molding, clamping and packing area is 25cm² and 680cm² respectively
- · Required packing pressure is another important factor to determine press capacity

ASM 🛞

Platen: Sensing for Co-planarity

Mold thickness gauging sensors

Individual compression motors

Mold Press

Beth Keser, Ph.D.

- Driven by precise servo motors with 60 ton capacity
- Auto compensation enabling mold coplanarity within 20µm
- Maximum number of press in multiple mold station is 4

Vacuum Design Vacuum performance is critical for wafer level molding Minimum mold flow does not facilitate air escape Large packaging area, so potential for air entrapment Die to die spacing needs to be filled

• Sub-torr vacuum can be achieved by high efficient pump, qualified sealing material and methodologies

Throughput

Operation	Yamada	ASM
Machine time (mold open/close)	75 sec	30 sec
Cure Time	600 sec	600 sec
Total Cycle Time	675 sec	630 sec
Shots/mold	5.3	5.7
Molds/system	2	2 (4max)
Wafers per Hour	10.6	11.4 (22.8)

Beth Keser, Ph.D.

Vacuuming rate control is also important to ensure required vacuum level is achieved

Compression Mold Tool Comparison

Vendor	Compound Types	Price	Market - General	Market - FO
ASM Pacific Technology	Liquid and Solid	++	++	++
Τζ₩Δ	Liquid and Solid	++	+++	+
	Liquid and Solid	+	+	+++

LPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 12
	Pick and Place	
	Equipmont	
	Lquipment	
	and the second se	
TIMAP	2	
	7	
IW LPC 2015- San Jo	se. CA. USA	October 15, 2015

Placement Equipment Challenges

- Placement Accuracy
- Fiducials: local vs. global
- Throughput
- Handling
- Capital Cost
- Feeders

Flip Camera insures good alignment between Bonding Head Nozzle Center and Die Center during transfer

		Panasonic
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 124

Assembleon Pick and Place Video

C 2015, San Jose, CA, USA

Placement Challenges

- Local Accuracy
 - There are fiducials on the substrate next to the bond location
 - With every bond the machine can align on the local fiducials before die placement

Beth Keser, Ph.D.

- Between alignment and bond there is usually less than a second of time

Global Accuracy needed for FO-WLP

- There are no fiducials on the substrate next to the bond location
- The machine can only align once on global fiducials
- After the global alignment the machine has to build-up a consistent matrix of dies without a possibility of local alignment
- Between alignment and bond there can be hours of time
- Multi Bond Head Machines (needed for FO-WLP!)
 - To provide sufficient UPH (units per hour) the pick & place machine needs to have multiple bond heads
 - The combination of global accuracy and multiple bond heads is an additional challenge, as the offset drift between different bond heads needs to be under control

a contraction of the second se

Vendor Placement Model UPH Cost Work Area Accuracy Datacon Datacon ±10µm @ 8800 5000-7000 ++ 340mm x 340mm (BESI) 3σ Chameo ±10µm @ Universal Fuzion 7000-8000 ++ 813mm x 610mm 3σ Beth Keser, Ph.D. October 15, 2015 127 C 2015, San Jose, CA, US

Other Pick and Place Tool Attributes

• Working area (mm)

Placement Tools

- # placement heads and spindles/head
- Bond force (N or g)
- Bond force resolution (N or g)
- Part Feeder types
- Wafer, tape and reel, tray, waffle pack
- Face up and face down placement
- Camera locations, models, and inspection capability

Beth Keser, Ph.D.

- Max chip size (mm)
- Bond head/stage heater

Merschon, UIC, IWLPC, 2014

Lithography Challenges

- Warped Molded Wafers
 - Handling
 - Focus
- Depth of focus
- Throughput
- · Aligner vs. Stepper
 - Aligner cannot be used due to die drift and panel warpage
 Poor alignment to die across entire panel results in low yield
 - Stepper images reticle steps across molded panel
 - Can optimize exposure within molded panel, but not within reticle

Beth Keser, Ph.D.

- "Quasi-local" alignment

Rudolph JetStep

Feature	Benefit
Large Field of View (52mm x 66mm)	Throughput Maximized (vs. 52mm x 34mm)
On the fly auto-focus	Exact focus on every exposure beneficial for warped wafers
$2\mu m$ resolution, $0.5\mu m$ overlay	Fine via, L/S resolution
Single sided telecentric lens	Real time automatic magnification compensation compensates for die drift
Handling warped molded wafers	Transport and chuck can handle -4mm to +6mm warpage

1		RUDDLPH
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 131

Stepper Video

Sputtering Challenges for FOWLP Cu Seed

• Mold compound contains moisture - must be removed

Beth Keser, Ph.D.

- Mold wafer max temperature is <150°C
- High yield, high throughput FOWLP processing requires:
 - Technology to bake the wafer efficiently
- Multi-Wafer Degas by SPTS – Removes degas as bottleneck
- Advantages
 - High Throughput
 - Low Contact Resistance
 - Single wafer processing, single wafer yields

SPTS

68

Die Drift Challenges

- For economical and cost effective package, lithography has to be repetitive in HVM.
- Accurate registration of multiple litho layers required.
- Good yield is key enabler for FOWLP.
- Die drift after molding is a well known problem for FOWLP.

Beth Keser, Ph.D.

- Die drift can lead to significant misalignment in litho processing step.
- Die drift can lead to limit the device pad pitch.
- Die drift can also lead to current crowding and electromigration.

Die Drift

- Mold compound cure shrinkage contributes to die shift.
- Other factors that are attributed to die shift are carrier, tape, adhesive strength, and mold temperature
- Die picked onto tape on a carrier are known to move toward the center of the molded panel.

Beth Keser, Ph.D.

- The die shift increases as the distance from center increases

Die shift of 8" molded wafer 7x7 die in 10x10pkg Max shift of 79um Mold CTE of 8ppm/°C Mold cure shrinkage 0.125%

Sharma, IEEE Trans. on CPMT, 2011

October 15, 2015 139

Die Drift Optimization

Compensate for die drift

- Deliberately misplace die at pick and place to account for drift

Die Drift Optimization

- For same package size, the larger fan out ratio (smaller die size) has larger die drift.
- Lower molding temperature decreases die shift.
- Reduced ΔT leads to less mismatch between die/tape/carrier
- Lower CTE and cure shrinkage mold compounds can lead to less die drift.
- Other process parameters to reduce die shift: high tape adhesive strength and pre-anneal step after pnp

	Parameter	Influence on Die Shift	Solution
Sharma,	Molding tape thermal expansion	-	Use support carrier wafer Use lower molding Temperature
IEEE Trans. on CPMT, 2011	Molding tape adhesive strength		High adhesive strength Use lower molding temperature Pre-anneal molding tape
	Mold compound cure shrinkage		Use low cure shrinkage compound
	Mold compound thermal shrinkage		Use low CTE mold compound Use lower molding temperature
0	Die shift pattern	1	Measure, analyze & compensate
	📕 very bad 🏓 bad 省	r very good	
WLPC 2015, San Jose	, CA, USA	Beth Keser, Ph.D.	October 15, 2015 14

Die Drift Impact: EMC Properties

- MC2/3 have higher filler content to increase E and decrease CTE
- MC3 has more catalyst than MC2 to enhance gelation
- Results show that MC1 has higher die drift than MC2/3 likely due to higher CTE2.
- MC2/3 drift is similar.

Kim, ECTC, 2011

WLPC 2015, San Jose, CA, USA

	MC1 (reference)	MC2	MC3
Туре	Granule	←	←
Filler (wt%)	89.5	90	\leftarrow
CTE1/CTE2 (ppm/°C)	7/34	7/31	\leftarrow
T _g (°C)	143	149	←
Modulus E1/E2 (GPa)	22.6/0.7	24/0.8	\leftarrow

Die Drift Impact: Carrier Material

- Si carrier has low CTE of 3ppm/^oC and dimension does not change significantly during mold process. Die drift dominated by cure shrinkage and die move inward.
- Cu carrier has CTE of 17ppm/°C and expands during mold process causing outward die shift.

Die Drift Impact: Die/Tape Adhesion

- Typical thermal release tape compared to Brewer Science HT10.10 Wafer bond material (spin on film) which uses thermomechanical slide off debond (180-200°C)
- Pick and place was not compensated

	adhesiye film		
	Thermo release		Thermoplastic HT.10.10
pick and place conditions	Applied force (0.15N)	Applied force (0.3N)	Applied force (0.35N) T = 160°C, Time = 5sec
die shear strength (MPa)	80 ± 20	200 ± 20	450 ± 15
die shift (µm)	600 ± 150	30 ± 15	30 ± 15

• By optimizing pick and place parameters to improve adhesion strength between die and adhesive, die drift can be reduced.

Beth Keser, Ph.D.

WLPC 2015, San Jose, CA, USA

Mazuir, EPTC, 2011

General FOWLP Design Rules

Rule	Dimension
Packagesize	1x1mm ² -25x25mm ²
Die size	0.5x0.5mm ² - 11x11mm ²
# Cu RDL Layers	2
Cu RDL Line/Space (min.)	10μm/10μm
Die Drift (min.)	15-30μm
Die pad pitch (min.)	40-60µm
Die to package edge (min.)	75µm
Die to die spacing (min.)	150µm
# Die	>3
# Components	>10
Min. Pkg Height (min.)	0.4mm
BGA Pitch (min.)	0.35mm

Nanium Design Rules

Rule	Current	Future
Package size	1x1mm ² -25x25mm ²	
Die size	0.2x0.2mm ² -10x10mm ²	Larger die will reduce BLR
# Cu RDL Layers	3	
Cu RDL Line/Space (min.)	10µm/10µm	
Dielectric Opening (min.)	15µm	10µm
Die pad pitch (min.)	40µm	
Die to package edge (min.)	50µm	
Die to die spacing (min.)	120µm	80µm
# Die	>3	
# Components	>10	
Min. Pkg Height (min.)	0.35mm	
BGA Pitch (min.)	0.35mm	0.30mm
B B		nanium

ASE Design Rules

Rule	Current	Comment
Packagesize	2x2mm ² - 14x14mm ²	
Die Thickness	0.2mm	
# Cu RDL Layers	3	
Cu RDL Line/Space (min.)	2μm/2.5μm	
Dielectric Opening (min.)	15µm	
PI overlap of die pad opening	15µm	Requires 45µm die pad opening/50µm die pad
Die to die spacing (min.)	100µm	
# Die	>3	
# Components	>10	
Min. Pkg Height (min.)	0.4mm	
BGA Pitch (min.)	0.4mm	
33		
2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015

75

AT&S ECP[®] Design Rules Roadmap

Design Rule Summary

- Wide range of package and die sizes supported
- FOWLP has finer L/S rules than embedded technologies
- Die drift spec is critical to minimize die pad pitch
- Current low cure dielectrics can resolve $15 \mu m$ via, but highly dependent on polymer thickness
- More specific rules needed for fan-out ratios including any BGA on die/mold compound transition keepout rules

Beth Keser, Ph.D.

LPC 2015, San Jose, CA, USA

Reliability: eWLB

	Stress Test	Standard/ Spec	Pass Criteria		
Moist	ure Sensitivity Level (MSL)	EIA/J-STD-020C (Level 1)	MSL1		
High 1	Femperature Storage (HTS)	JESD22-A103 (Ta:150⁰C)	1000hrs.		
То	magrature Cycling (TC)	JESD22-A104 (Cond B:-55°C to 125°C)	1000x		
Te	imperature cycling (TC)	Preconditioned (Level 1; Tr:260°C)	1500×		
		JESD22-A118 Cond A: (130°C / 85% RH)	96hrs.		
0	Indiased HAST (UHAST)	HAST) Preconditioned (Level 1; Tr:260°C)			
Tei	mperature Humidity Bias (THB)	JESD22-A101 (85°C / 85%r.h.,VCC)	1000hrs.		
Tem	perature Cycling on Board	IPC 97-01	500×	Qualification	
	(TCoB JEDEC)	(-40°C / +125°C, 1cy/h)	1000x	Vehicle:	
Tem	perature Cycling on Board (TCoB NOKIA)	NOKIA Spec. (-40°C / +125°C, 2cy/h)	FF> 500 cycles	9.25x8.80pkg 5.28x5.62 di 0.5 pitch	
	Drop Test	JESD22-B111	< 10% fails @ 20 drops	No UBM 122 Bumps	
	Drop Test	NOKIA Spec.	< 5% fails @ 30 drops		
HAST = Highly Accelerated Stress Test					
2015, San Jose	, CA, USA	Beth Keser, Ph.D.		October 15, 2015	

77

Reliability: DECA's M-Series BLR

Reliability: J-Devices PLP

Item	Design specifications
Package Size	12mmx12mm
Die size	6 mm x 6 mm
Ball pitch	0.50mm
Layers	2 Layers
Line/Space	20µm/20µm
Pad pitch	55/110µm(stagger)

Package level reliability

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

Board level reliability 1st Failure occurs at 1676cyc.

Reliability: AT&SECP®

Method	Specification	Result	
Thermal cycling	-55°c/+150°C	1000 cy cles passed (TC Grade 1)	
Temperature / Humidity	85°C / 85%RH	1000 hours passed (TH Group A)	
Board bending	5 mm/s	80k bends passed	
Random vibration	3 g (rms) [5-500] Hz	30 min per axis passed	
Shock	10k g @ 0,2ms	3 per direction passed	
Reflow sensitivity	Pb-free profile (255°C)	30 cycles passed	
HAST	110°C @ 85%RH @ 5VDC	264 hours passed	
Drop test	1500g @ 0,5ms	10 drops passed (MS Group F)	
High temperature storage	@ 125°C	1000 hours passed (TH Grade 2)	
Moisture Sensitivity Level	Peak @ 260 °C	Minimum MSL 3	

		AT&S
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 157

Reliability Summary

- FOWLP structures can pass MSL1
- Latest low cure dielectric materials can pass component level reliability with no issue (Thermal cycling condition B (TCB -55°C to 125°C))
- Packages with conservative fan-out ratio (pkg area/die area) can pass board level reliability without UBM
- More board level reliability testing needed around small fanout ratios, finer pitches, multi-layer RDL, and ball depopulations

Beth Keser, Ph.D.

1000

Markets & Applications

		Т	echn	olog	y Pla	tforn	n De	velop	omen	nt			
eWLB													
Mold-frame (fan-out area) Redis	tribution								Rada	ar / mm	-wave (S	SiP)	
Chip	1000						DC/D	C Conv	erter (S	SiP)		1	
	0						Floor				 Fiber O	 	
Solder St							Eleci	io-Opti				pues (e	
Source: Infineon	(Solder ball)			M2N	1 Comm	unicatio	on						
Course. minison			PML	l J (SiP)									
Customer		LED	Arrays	, Photoi I	nics (Sil	-)							
Application	Consumer	ASIC	and S	ensor A	rrays (N	ICM)							
n Projects	Wireless Mobile	Med	l lical. Se	l curity, E	- Encrypti	on, Poir	l nt of Sa	les (SiP)				
Executed									<u> </u>				
		Mixe	ed Signa I	al ASIC. I	, RF & F	ligh Po	wer Dis I	sipation I					
		Con	sumer l	MEMS,	Stacke		1 (PoP)						
Feature	Legacy	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
			20	014			20	15			20	16	
3 nanium 3													
2015, San Jose, CA, USA				Beth Ke	ser, Ph.D.							October	15, 201

Markets & Applications Technology Platform Development eWLB Mold-frame (fan-out area) Source: Infineon Military SiGe RF (SiP) Customer Application in Automotive MEMS Consumer Wireless Mobile BioSensor (SiP) Projects Executed Wearable Electronics (SiP MOEMS (SiP) Feature Q1 Q2 Q3 Q1 Q2 **Q**3 **Q**4 Legacy Q4 Q1 Q2 Q3 Q4 2014 2015 2016 nanium 🎍 200) WLPC 2015, San Jose, CA, USA Beth Keser, Ph.D. October 15, 2015 162

Panel FO Advantages

- Panel scale assembly
 - Large batch process
 - Packaging cost reduction can be realized.

Panel Level Package

Panel FOWLP

- Packages per Assembly Panel Considerations
 - 300mm wafer \rightarrow 616 10mm x 10mm packages
 - 400mm X 500mm panel →1,911 10mmx10mm packages

Organic technology vs. semiconductor technology

- Equipment cost and throughput differences
- · Mold vs. laminate
- Wafer like RDL process vs. build up layers
- Minimum line and spacing differences

Palesko, IWLPC, 2014 Beth Keser, Ph.D.

Panel FOWLP Panel technology has a cost advantage on large packages/dies Large panel versus small wafer FOWLP has a design rule advantage due the use of semiconductor technology Wafer processing equipment versus PCB panel processing equipment Both technologies are extremely sensitive to yield Fabrication defects result in the scrap of the die and the package

1	Palesko, IWLPC, 2014	Supply Chain Cost Modeling
WLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 171

Panel: Intelligent Combination of WLP and PCB

- Fusion of WLP/LCD/Substrate/PCB/Solar/Flex electronics
- Finer L/S from wafer level process
- Embedding die into substrates

Fully electrical connected WL embedded package stack with TMV & 3D routing Fraunhofer October 15, 2015 175 IWLPC 2015, San Jose, CA, USA Beth Keser, Ph.D.

FIZM Panel Molding

Equipment in Japan before shipment

First molded panel 18" x 24 "

Large area compression molding:

- APIC Yamada
- Wafer Level: 300 mm up to 450 mm possible
- Panel Level: 18" x 24" (456 x 610 mm²)
- Lamination

				the state of the second st
	Attributes	300mm FO	Panel FO	Panel PCB
	Pkg Cost	-	+	++
	Capital	+		-
	Capacity	-	+	+
	Manufacturing Infrastructure	+	-	+
	Yield	+	-	
	L/S	+	-	-
	Die Prep	+	+	-
	Application Space	High-end & Low-end	Low-end	Low-end
100	33			
IWLP	C 2015, San Jose, CA, USA	Beth Keser	, Ph.D.	October 15, 2015

Panel vs 300mm Round Trade-offs

ASE Panel Capability

Key Technology of Low Cost Fan-out Solution

- ASE equipment can meet current substrate panel size (410x510mm)

SPIL's Panel Capability

Vend	or-site Dem	onstration		L: 470 mm (49	columns)		
	Basi	ic information					•
Chip dimer	nsion	6 X 6 X 0.15	mm				T
Package d	imension	9 X 9 X 0.475	5 mm				
	Layer	1 L					\$
RDL	L/S	10/10					: 370
	Structure	BOT (Ball on	Trace)				E C
Ball size		0.25 mm					n (3
Ball pitch		0.4 mm					8
I/O counts		356					swo
• Packag	ge structure of	P-FO package		• Full matrix la	yout (49	x 38)	
E							PIL
2015, San Jose, 0	CA, USA		Beth Keser, Ph.D.			October 15, 20	15 100

Low Cure Dielectric Panel Capability

- Slit coating is used for panel size substrate such as LCD, OLED.
 - Dielectric vendors need to test capability of slit coating
 Demonstrate good uniformity on the panel substrate.

Sam ple	Test material
Substrate	Glass
Coating area	300mm × 300mm
Target thickness	12um
Thickness range at scan direction	<4%
Thickness range at nozzle direction	<4%

Tune material for panel substrate • Test on glass

- Teston molded die
- leston molded die

		Asahi KASEI Asahi KASEI E-MATERIALS
IWLPC 2015, San Jose, CA, USA	Beth Keser, Ph.D.	October 15, 2015 181

Panel Capability Film Thickness and Uniformity **Bake Condition A Bake Condition B** (vacuum treatment + 125degC x4min) (125degC x4min) 20 20 MD MD Film Thickness(nm) 5 Film Thickness(nm) 5 тD TD 10 10 0 100 200 300 400 0 100 200 300 400 Measurement Point(mm) Measurement Point(mm) Thickness Range (um) Thickness Range (um) (µm) (µm) MD 15.8 0.85 MD 16.0 0.96 ΤD 15.7 0.84 ΤD 15.8 0.77

✓ Slit coater can be coated 15µm thickness film. Thickness uniformity in both conditions A and B was good. SUMITOMO BAKELITE CO., LTD. October 15, 2015 183

Beth Keser, Ph.D.

LPC 2015, San Jose, CA, USA

EMC Panel Capability 500x600mm panel Sheet FOWLP For compression mold/lamination 300mm panel Molding size Granule For compression mold **Traditional Pkg** Good filling performance Pellet Short time setting For Transfer mold Small location dependence Easy thickness control **Near Future** Current Future Sheet molding a good solution for large panel molding

IW LPC 2015- San Jose, CA, USA

October 15, 2015

Device Manufacturers using FOWLP

- IMC/IFX
 - PMB5726-SMARTi LU
 - LTE Multimode RF Transceiver
 - 217 6.5x6.5x0.7 0.4P
 - 5.34mm x 5.16mm die
 - PMB8810
 - Single Chip Baseband, RF Transceiver, PM and FM radio

 - 217 8x8x0.7 0.5P
 - 5.44x5.21 die
 - PMB5712
 - Multimode RF Transceiver
 - 138 5.32x5.02 0.4P
 - 4.17x3.9 die
 - PMB9801
 - GSM/W-CDMA Baseband
 - 217 8x8 0.5P
 - 7.01x 6.99 die
 - PMB7900

LPC 2015, San Jose, CA, USA

- GSM Baseband, RF Transceiver, Power Management, FM Radio
- 184 8x8 0.5P
- 4.6x4.25 die

- Marvell
 - PM820
 - Power Management w/Audio Codec
 - 133 6.3x4.7 0.4P - 3.89x2.44 and 1.79x1.79
- Spreadtrum
 - SC2712A
 - Power management
 - 217 8.1x6.9 0.4P
 - 5.7x2.5 die
 - SC8502
 - GSM / W-CDMA Baseband + RF Transceiver

 - 230 7.4x7.4 0.4P
 - 28x28 and 30x30 die
 - 2 metal layer RDL

- **Phones/Tablets with FOWLP (Samsung)**
- Samsung Champ DUOS
 - The Champ DUOS is an entry-level GSM smart phone with a 2.6" color LCD with resistive touch screen and telescoping stylus.

Beth Keser, Ph.D.

- Samsung Galaxy S GT-i9000 UMTS
- Samsung Galaxy SII
 - Samsung's Galaxy SII comes in as a direct competitor to the iPhone lineup.
- Samsung Glide SGH-I927R
 - Released exclusively for Rogers Wireless in Carada, the Glide SGH-I927R is a new quad- band GSM / EDGE and tri-band W-CDWA / HSPA+ addition to Samsung's Galaxy series of mobile devices.
- Samsung Galaxy Nexus GSWEDGE & W-CDMA/HSPA+ Touchscreen Smart Phone
 - This thin (9.0 mm) form-factor smartphone is quad-band GSM / EDGE and W-CDMA / HSPA+ (850/900/1700/1900/2100 MHz) compatible, with connectivity provided via WiFi
 - 802.11a/b/g/n, Bluetooth 3.0 + EDR, NFC, and USB 2.0.
- Samsung Galaxy S3 GT -19300
 - The new \$3 is touting a 1.4 GHz quad-core ARM 9 processor, an HD Super AMOLED 4.8" display protected by Corning's Gorilla Glass 2, an 8 MP rear camera and a forward facing 1.9 MP camera.
- . Samsung Nexus S GT
 - Samsung's first NFC-capable smartphone was released in December 2010 and was co-developed with Google. The Nexus S is a high-end smartphone with features comparable to other premiere 3G smartphores and lacking only the latest trends of 4G/LTE connectivity and 3D screen.
- Samsung Captivate
 - One of a number of phones under the Galaxy umbrella. As one of the first phones to be powered by Samsung's 1 GHz "Hummingbird" Applications Processor.
- Samsung GT-P1000 Galaxy Tab UMTS Tablet

7.0-in. TFT-LCD display with WSVGA (1024 x 600) resolution, 16M colors, and a multitouch capacitive touchscreen. It runs the Android 4.2 "Jelly Bean".

200)

Beth Keser, Ph.D.

October 15, 2015 188

Phones with FOWLP (Motorola)

- Motorola Droid Bionic XT875
- Motorola released its first LTE phone, the Motorola Droid Bionic, in September 2011.
- Motorola Droid RAZR XT912
 - Introduced as a "Touch Tablet", the Droid RAZR mimics a small version of an Android tablet but has the features of a smart phone all in a surprisingly thin package.
 - The RAZR is advertised to support CDMA 800 & 1900 as w ell as LTE 700MHz. How ever, a deeper dive reveals more. Additionally, the RAZR uses Android 2.3.5 (Gingerbread) as w ell as a 4.3" Super AMLOED display with capacitive touchscreen. Other RAZR features include; 8MP camera, 1.3MP HD secondary camera, WiFi, Bluetooth, GPS, 4G mobile HotSpot capabilities.
- Motorola Droid 4 XT894
 - Android 2.3.5 "Gingerbread" smartphone that features a sliding QWERTY keyboard and is distributed by Verizon. It's advertised to support CDMA 850 and 1900 EV-DO as well as LTE 700 MHz

Beth Keser, Ph.D.

Phones with FOWLP (Nokia)

Nokia C1

C 2015, San Jose, CA, USA

- The C1 is a part of Nokia's economical C-Series of mobile handsets.
- Nokia 110 GSM/EDGE
- Nokia 1616-2c Dual-band GSM Phone

 A basic, entry-level, bar-form mobile phone as part of the pre-paid device lineup for T-Mobile.
- Nokia X1-01

VLPC 2015, San Jose, CA, USA

Phones/Tablets with FOWLP (Apple)

- Apple iPAD2 A1396 3G Tablet
- Apple iPhone4 A1332

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

October 15, 2015 191

Phones/Tablets with FOWLP (Other)

LG Optimus 3D LG-P920

 The LG Optimus 3D P920 is one of several mid-2011 smartphones available with an auto-stereoscopic GSM and multiple W-CDMA bands, the 3D display. Working over quad-band P920 uses EDGE and HSDPA for data while running the Android 2.2 OS.

Huawei Ascend P1 (U9200)

Huawei Ascend P1 (also known as the U9200) is an Android smartphone supporting GSM, W-CDMA, and LTE bands. It has a 4.3-h.
 Super AMOLED display with a capacitive multi-touch screen overlay.

Intel Xolo X900 AZ510

 The Intel Xolo X900 AZ510 is a bar-format Android 23 ("Gingerbread") smartphone featuring a 4.03-in. 16M-color WSVGA TFT-LCD display (1024 x 600) and an integrated capacitive buchscreen overlaid with protective Coming Gorilla Glass. The X900 is designed b be compatible with quad-band GSM / EDGE (850 / 900 / 1800 / 1900 MHz) and W-CDMA / HSPA+ (850 / 900 / 1900 / 2100) cellular networks.

- K-Touch W806 Quad Band GSM EDGE WCSMA HSPA
- LG SU660 Optimus 2X UMTS
- Meizu MX 030

A smart phone supporting GSM / EDGE and W-CDMA / HSPA+. It's equipped with a 4-in 640x960 ASV TFT display overlaid with a multitouch capacitive touchscreen.

- Meizu M9
- TCL Alcatel OT-C123
- Coolpad 8705

multimode, multiband smartphone that features a 4.7-in. TFT-LCD display with FWVGA (854 x 480) resolution, 16M colors, and a capacitive touchscreen. It runs the Android 4.3 "Jelly Bean".

IWLPC 2015, San Jose, CA, USA

Beth Keser, Ph.D.

97

FOWLP Package Cost Estimates

Summary

- Multiple application and device drivers for fan-out and embedded packaging technologies
 - Larger WLP
 - Coarser pitch WLP
 - Module
 - SiP
 - PoP
- Multiple fan-out and embedded technologies offered
 eWLB dominates HVM
- Selection will depend on time-to-market, integration need, yield requirement, and supply chain requirement

Beth Keser, Ph.D.

Dielectric Reference Papers

- Topper, et al, "A Comparison of Thin Film Polymers for Wafer Level Packaging," ECTC 2010, p 769.
- Rodrigo, et al, "Enabling of Fan-Out WLP for More Demanding Applications by Introduction of Enhanced Dielectric Material for Higher Reliability," ECTC 2014, p 935.
- Anzai, et al, "Drop Test and TCT Reliability of Buffer Coating Material for WLCSP," ECTC2014, p 829.
- Garrou, "IFTLE 213 What's New in Permanent Polymer Dielectrics: Dow, HD Micro, Zeon," Solid State Technology, Insights From the Leading Edge, October 2014.

Beth Keser, Ph.D.

VLPC 2015, San Jose, CA, USA