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Abstract. Current distributions in thin film wires bent at different angles were investigated with
a conformal mapping method. The technique of angles rounding using three parameters was sug-
gested. This technique enabled to obtain a smooth line having a similar form with an arc of a circle
and to avoid infinite current density in the angle. The dependency between current density and
the radius of rounding was examined.
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Introduction

Current distributions in flat conductors are problems of interest because of printed circuit boards
and on-chip devices development [14, 4, 10]. Commonly these problems are solved numerically [11]
or using near-field measurements [2, 1]. In the event if there are various angles in conductors the
numerical solutions have bad convergence near the angles because formally the current density in the
angle is infinite. In real conductors there are not such problems because there are not absolutely sharp
angles and a small rounding always exists. It is difficult to take this rounding into account numerically
therefore analytical methods are required. Such methods were investigated by P. M. Hall [6, 5, 7]
and L. N. Trefethen [13] but only the analytical solution for angle of 90◦ with rounding was found
[5]. In this paper we have considered current distributions in thin film wires bent at different angles
with rounding and suggested the technique of estimating an optimal radius of corner rounding in such
wires.

1. The conformal mapping for a conductor bent at arbitrary angle

The geometry of a considered conductor is depicted in figure 1. α is an arbitrary angle. Only the case
of h > k have been investigated (the other may be examined in a similar way). We have considered a
direct current. This fact has enabled us to reduce Maxwell’s equations to the Laplace equation for a
scalar potential

∆ϕ = 0. (1)

This equation was solved for a complex potential W (z) = U(z) + iV (z) using the conformal
mappings method; V (z) is a scalar potential and U(z) is a stream function. These two functions are
bound with Cauchy–Riemann conditions therefore a boundary conditions can be written only for one
of them. The boundary conditions requires the absence of a current flow through lateral boundaries
of the conductor so the resulting boundary value problem is the following [3]
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Figure 1. The geometry of considered conductor.


∂2W

∂x2
+
∂2W

∂y2
= 0

U(x, y)|(x,y)∈Ω1
= U1 = const

U(x, y)|(x,y)∈Ω2
= U2 = const

Ω1 and Ω2 are the upper and lower boundaries of the conductor respectively.

To solve this problem we have obtained first the solution of Laplace equation in the upper
complex half-plain with the boundary conditions corresponding a point charge at the origin. Than we
have mapped this solution onto the considered domain.

The required mapping corresponds the Schwarz–Cristoffel transformation of the following type

z = C

∫
1

z1

(
z1 − 1

z1 + a

)1−β

dz1 (2)

β = α/π. Undefined constants C and a have been determined from the conditions of boundary
conformity and having the following view

a =

(
h

k

) 1
1−β

C =
h

π
(sinα− i cosα)

where h, k and α are depicted in figure 1.

The expression (2) is representable in terms of elementary functions if 1 − β = P/Q where
0 < P < Q; P and Q are integers [8]. From a physical point of view this condition does not impose
any restrictions on an angle because any irrational number can be approximated by the rational one
with arbitrary high accuracy. Thus, (2) can be reduced to

z = −(1 + a)QC

∫
tQ−1

tP (tQ + a)(tQ − 1)
dt (3)

where

t =

(
z1 + a

z1 − 1

) 1
Q
.

We have integrated the expression (3) for the angles of 60◦, 30◦, 120◦ and obtained the following
results:
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Figure 2. Distribution of a current density for α = 60◦ and h/k = 2.

1. α = 60◦:

z = C

{
1

b2
ln(t+ b)− 1

2b2
ln(t2 − bt+ b2)− ln(t− 1) +

1

2
ln(t2 + t+ 1)

+
i
√

3

2b2
ln

(
−2t+ b− i

√
3b

2t− b− i
√

3b

)
+
i
√

3

2
ln

(
−2t− 1− i

√
3

2t+ 1− i
√

3

)}
+ C1 (4)

where

C =
h

2π
(
√

3− i)

C1 = −h+ k

4
− i
√

3

12
(7k − h)

t =

(
z1 + b3

z1 − 1

) 1
3

b =

√
h

k

2. α = 30◦:

z = C

{
i

b5
ln

(
t+ ib

−t+ ib

)
+

√
3

2b5
ln

(
t2 +

√
3bt+ b2

t2 −
√

3bt+ b2

)
+
i
√

3

2
ln

(
2t+ 1 + i

√
3

−2t− 1 + i
√

3

)

+
i
√

3

2
ln

(
2t− 1 + i

√
3

−2t+ 1 + i
√

3

)
+

i

2b5
ln

(
2t+

√
3b+ ib

−2t−
√

3b+ ib

)
+

i

2b5
ln

(
2t−

√
3b+ ib

−2t+
√

3b+ ib

)

+ ln

(
t+ 1

t− 1

)
+

1

2
ln

(
t2 + t+ 1

t2 − t+ 1

)}
+ C1 (5)
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Figure 3. Distribution of a current density for α = 30◦ and h/k = 2.

where

C =
h

2π
(1− i

√
3)

C1 = k − h
√

3

2
− i
(
h

2
+ k
√

3

)

t =

(
z1 + b6

z1 − 1

) 1
6

b =

(
h

k

) 1
5

3. α = 120◦:

z = C

{
−1

b
ln(t+ b) +

1

2b
ln(t2 − bt+ b2)− ln(t− 1) +

1

2
ln(t2 + t+ 1)

− i
√

3

2b
ln

(
2t− b− i

√
3b

−2t+ b− i
√

3b

)
+
i
√

3

2
ln

(
2t+ 1− i

√
3

−2t− 1− i
√

3

)}
+ C1 (6)

where

C =
h

2π
(
√

3 + i)

C1 =
h− k

4
+ i

√
3

12
(7k + h)

t =

(
z1 + b3

z1 − 1

) 1
3
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Figure 4. Distribution of a current density for α = 120◦ and h/k = 1.5.

b =
h

k
.

The lines of current calculated for these angles are shown in figures 2 – 4.
The current strength J applied to the conductor supposed to be specified. The current distribu-

tion for y → −∞ (fig. 2–4) is uniform therefore one can assume that current density at an infinite
distance is j−∞ = J/k. On the other hand, current density is proportional to the amplitude of complex
potential W (z1) derivative [12]:

j(z) = A′
∣∣∣∣∂W (z1(z))

∂z

∣∣∣∣ .
The complex potential of a point charge placed at the origin W (z1) ∼ ln(z1) [12] therefore one can
obtain the expression for the current density in terms of the implicit function z1(z)

j(z) = A′
∣∣∣∣∂W (z1)

∂z1

dz1

dz

∣∣∣∣ = A

∣∣∣∣∣ 1

C

(
z1(z) + a

z1(z)− 1

)1−β
∣∣∣∣∣ (7)

where A′ and A are proportionality factors.
y → −∞ and x = const correspond to value z1 = r1e

θ1
∣∣
r1→0, θ1∈[0,π]

. The substitution of these

values into (7) gives

j−∞ = A
∣∣∣π
h
ib
∣∣∣ = A

π

k
(8)

whence it follows that

A =
J

π
.

Finally, the distribution of current density is the following

j(z) =
J

π

∣∣∣∣∣ 1

C

(
z1(z) + a

z1(z)− 1

)1−β
∣∣∣∣∣ . (9)

The dependency z1(z) is given by the expression (3) (or (4) - (6)) in implicit form and can be
calculated numerically. The dependency between current density and the distance from the point B
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Figure 5. The dependency between scaled current density and scaled distance from
the point B along the line BE (fig. 1) for the angles of 30◦, 60◦ and 120◦. l is the
length of BE.

Figure 6. The points conformity for a conductor with the rounded angle.

along the line BE (fig. 1) is depicted in figure 5. The scaling is used in order to compare distributions
for different angles.

The point E of the complex plane z corresponds z1 = 1 + i · 0 (fig. 1). With relation to (9) one
can see that the current density in the angle is infinite. This result is nonphysical because in real wires
there aren’t absolutely sharp angles.

2. Current distributions in wires with rounded angles

To take the rounding into account we have used a technique similar to the one considered in [9] but
we have used three new parameters instead of two. It was done in order to obtain smooths curve that
looks like an arc of a circle.
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We have modified the expression (2) in the following way

zR = C̃

∫
1

z1

(
z1 − 1

z1 + ã

)1−β

dz1

+ C̃γ

∫
1

z1

(
z1 − 1 + δ1
z1 + ã

)1−β

dz1 + C̃γ

∫
1

z1

(
z1 − 1− δ2
z1 + ã

)1−β

dz1 (10)

where constants δ1, δ2 and γ define the radius of rounding (fig. 6).

Constants ã and C̃ were defined in a similar way to the non-rounded case from the conditions of
boundary conformity

C̃ =
h

π(1 + 2γ)
(sinα− i cosα)

ã =

(
h

k

) 1
1−β

{
1 + γ(1− δ1)1−β + γ(1− δ2)1−β

1 + 2γ

} 1
1−β

.

To calculate the expression (10) we have supposed again that 1− β = P/Q and denoted

zR = I(1) + γI(1− δ1) + γI(1 + δ2)

where

I(m) ≡ C̃
∫

1

z1

(
z1 −m
z1 + ã

)P
Q
dz1.

Changing variables

tm =

(
z1 + ã

z1 −m

) 1
Q

bm =

(
ã

m

) 1
Q

we have led I(m) to the rational integral

I(m) = −(1 + bQm)QC̃

∫
tQ−1
m

tPm(tQm + bQm)(tQm − 1)
dt. (11)

The obtained expression is formally equivalent to (3) therefore previously calculated expressions
(4) – (6) have been used to find the result.

To determine the dependency between the radius of corner rounding ρ and parameters δ1, δ2
and γ we have assumed that the rounding curve is an arc of a circle (fig. 7). This assumption is
correct for ρ� h, k. The placement of the point E corresponds to z(1) and the placement of the point
E′ corresponds to zR(1). The lengths ∆x and ∆y were expressed through the radius ρ using simple
geometric considerations

∆x = Re[zR(1)]− xE ∼= ρ
(

1− sin
α

2

)
(12)

∆y = yE − Im[zR(1)] ∼= ρ
(

1− sin
α

2

)
cot

α

2
. (13)

The equivalence is inaccurate because the real curve isn’t an arc of a circle. The coordinates of the
point E are the following

xE = k (14)

yE = −h+ k cosα

sinα
. (15)
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Figure 7. Schematic diagram of a rounded angle.

The formulas (12) – (15) give two equations for three parameters. To obtain the third equation
we have imposed the condition GE = EH (fig. 6). Finally, the system of equation for parameters δ1,
δ2 and γ has been obtained

Re[zR(1)] ∼= k + ρ
(

1− sin
α

2

)
Im[zR(1)] ∼= −

h+ k cosα

sinα
− ρ

(
1− sin

α

2

)
cot

α

2

|zR(1)− zR(1− δ1)|2 = |zR(1)− zR(1 + δ2)|2.

(16)

The expression for current density for such mapping is defined in a similar way to (9) and has
the following view

j(zR) =

∣∣∣∣ 1

C

[z1 + a]1−β

[z1 − 1]1−β + γ[z1 − 1 + δ1]1−β + γ[z1 − 1− δ2]1−β

∣∣∣∣
where z1 = z1(zR).

The system (16) was solved numerically for angles of 120◦, 60◦ and 30◦. It was determined that
the solution of it exists only for the point E′ placed sufficiently close to the point E. That imposes
the restriction on the value of ρ for every given angle. For instance, acceptable radii for the angle of
120◦ should be less than 0.8k for the considered case. For the angle of 30 ◦ the maximal radius is just
0.012k. Probably, bigger radii should be obtained using some other techniques. More detail approach
to this problem is the object of further investigation.

The dependencies between the density of current at the point E′ normalised to j−∞ (8) and the
radius ρ of angle’s rounding normalized to the value of k are shown in figures 8, 3 and 12.

The current distributions in the conductors with the rounded angles are presented in figures 9,
11 and 13.
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Figure 8. Dependency between the density of current at the point E′ and the round-
ing radius ρ for the angle of 60◦.
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Figure 9. Distribution of current in the conductor with the rounded angle of 60◦

and h/k = 2. The rounding radius ρ = 0.02k.
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Figure 10. Dependency between the density of current at the point E′ and the
rounding radius ρ for the angle of 30◦.
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Figure 11. Distribution of current in the conductor with the rounded angle of 30◦

and h/k = 2. The rounding radius ρ = 0.011k.
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Figure 12. Dependency between the density of current at the point E′ and the
rounding radius ρ for the angle of 120◦.
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Figure 13. Distribution of current in the conductor with the rounded angle of 120◦

and h/k = 1.5. The rounding radius ρ = 0.1k.
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Conclusion

The obtained results show that the consideration of current distribution in a thin film wires with
absolutely sharp angles gives a nonphysical results, namely, an infinite current density in the angle.
Therefore the technique of angle’s rounding was suggested. Using of three parameters defining the
rounding radius instead of two enables us to obtain a smooth line having a similar form with an arc
of a circle. The obtained dependency between the extreme current density in a wire and a rounding
radius can be used to estimate a radius of an angle’s rounding required to prevent a destruction of a
wire with an applied current.
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