

### S-69.4123 Postgraduate Course in Electron Physics I Chapter 1: RESISTIVITY

### Saima Ali Date: Oct 19, 2012

**Department of Micro- and Nanosciences** 

## Contents

- 1. Introduction
- 2. Two and four point probe measurements
  - Fundamentals
  - Correction factors
  - Resistivity of arbitrary shapes
- 3. Measurement Errors and Precautions
- 4. Wafer mapping
  - Double implant
  - Modulated Photoreflectance
  - Carrier illumination
  - Optical Densitometry
- 5. Eddy current method
- 6. Conclusions

## **1. Introduction**

Resistivity

$$\rho = \frac{1}{q(n\mu_n + p\mu_p)}$$

Resistance

$$R = \rho \, \frac{l}{A}$$



## 1. Resistivity

- Resistivity of epitaxially grown layer is generally very uniform
- Contributes to series resistance, capacitance, threshold voltage, hot carrier degradation in CMOS devices, etc.
- Usually n and p unknown, so other measuring methods required
- Can be divided into contactless, temporary contact and permanent contact methods

# 2. Two point probe

• Easier to implement but interpretation of the measured data is more difficult.



Fig: (a)Two-terminal resistance measurement arrangements (b) Two-point probe arrangement showing the probe resistance  $R_p$ , the contact resistance  $R_c$ , and the spreading resistance  $R_{sp}$ .

## 2. Two point probe

• Total resistance

$$R_T = V/I = 2R_W + 2R_C + R_{DUT}$$

• How to determine R<sub>DUT</sub>?



## 2. Four point probe

- Originally proposed by Wenner in 1916 to measure the earth's resistivity.
- Valdes adopted it for semiconductor wafer resistivity measurements in 1954
- Probes are generally collinear
- High impedance at voltage port ( $Z_{in} \approx 10^{12} \Omega$ )
- Voltage drop over R<sub>w</sub> and R<sub>c</sub> negligible.



Fig: Four-terminal resistance measurement arrangements

# 2. Four point probe

- The most common method to determine resistivity
- Absolute measurement
- Used to provide standards for other measurements
- Also referred as Kelvin measurements

## 2. Four versus two point probe



Fig. Effect of contact resistance on MOSFET drain current

• Electric field

• Current density  

$$E = J\rho = -\frac{dV}{dr}$$

$$J = \frac{I}{2\pi r^{2}}$$
• The voltage at point P  

$$\int_{0}^{V} dV = -\frac{I\rho}{2\pi} \int_{0}^{r} \frac{dr}{r^{2}}$$

$$V = \frac{I\rho}{2\pi r}$$
Fig: one-point probe

• Voltage across two point probe

$$V = \frac{I\rho}{2\pi r_1} - \frac{I\rho}{2\pi r_2} = \frac{I\rho}{2\pi} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$



Fig: two-point probe

$$V_{2} = \frac{I\rho}{2\pi} \left( \frac{1}{s_{1}} - \frac{1}{s_{2} + s_{3}} \right)$$
$$V_{3} = \frac{I\rho}{2\pi} \left( \frac{1}{s_{1} + s_{2}} - \frac{1}{s_{3}} \right)$$

 $V = V_2 - V_3$ 





$$\rho = \frac{2\pi}{1/s_1 - 1/(s_1 + s_2) - 1/(s_2 + s_3) - 1/s_3} \frac{V}{I}$$

For  $s_1 = s_2 = s_3 = s_3$ 

$$\rho = 2\pi s \frac{V}{I}$$

However, wafers are finite in lateral and vertical directions. arbitrarily shaped sample the resistivity is given by

$$\rho = 2\pi s F \frac{V}{I}$$

For samples thicker than the probe spacing, correction are no longer adequate due to interactions between thickness and edge effects.

## **2. Correction Factors**

• F can be expressed for collinear probes with equal probe spacing s

 $F=F_1F_2F_3$ 

- Sample thickness: F<sub>1</sub>
- Lateral sample dimensions: F<sub>2</sub>
- Probe placement relative to the edges: F<sub>3</sub>

## 2. Correction for sample thickness

• Non-conductive bottom

$$F_{11} = \frac{t/s}{2\ln\left[\sinh(t/s)/\sinh(t/2s)\right]}$$

Conductive bottom

$$F_{12} = \frac{t/s}{2\ln\left[\cosh(t/s)/\cosh(t/2s)\right]}$$

• Thin samples

$$F_{11} = \frac{t/s}{2\ln(2)} \qquad (t \le s/2)$$

• Most four-point probe measurements are made with insulating bottom boundaries.

## 2. Correction for sample thickness

F<sub>11</sub> = Non-conductive bottom correction factor

F<sub>12</sub> =conductive bottom correction factor



Fig. Wafer thickness correction factors versus normalized wafer thickness; t is the wafer thickness, s the probe spacing

## 2. Correction for sample thickness

• If  $F_2 = F_3 = 1$  i.e for very thin samples

$$\rho = \frac{\pi t}{\ln(2)} \frac{V}{I} \approx 4.532 t \frac{V}{I}$$

• Sheet resistance for uniform doping

$$R_{sh} = \frac{\rho}{t} \approx 4.532 \frac{V}{I}$$

• Non-uniform doping

$$R_{sh} = \frac{1}{\int_0^t \sigma(x) dx} = \frac{1}{q \int_0^t [n(x)\mu_n(x) + p(x)\mu_p(x)] dx}$$

## 2. Correction for sample size

For circular wafers of diameter D, the correction factor  $F_2$ 

$$F_2 = \frac{\ln(2)}{\ln(2) + \ln\left([(D/s)^2 + 3]/[(D/s)^2 - 3]\right)}$$



Fig: Wafer diameter correction factors versus normalized wafer diameter. For circular wafers: D = wafer diameter; for rectangular samples: D = sample width, s = probe spacing

## 2. Boundary proximity corrections



Fig. Boundary proximity correction factors versus normalized distance d (s = probe spacing) from the boundary.  $F_{31}$  and  $F_{32}$  are for non-conducting boundaries,  $F_{33}$  and  $F_{34}$  are for conducting boundaries.

# 2. Dual configuration/configuration switched method

- Two measurements
  - Current through ports 1,4 and voltage sensed between 2,3.
  - Current through 1,3 and voltage between 2,4.
- Advantages
  - No longer need for high symmetry condition.
  - Lateral dimensions not needed.
  - Measurements self-correct for probe spacings.

- Based on conformal mapping developed by van der Pauw.
- Resistivity can be measured even the current pattern is unknown.
- Prerequisites:
  - Contacts lie at the circumference of the sample.
  - Contacts are sufficiently small.
  - Samples are uniformly thick.
  - Surface of the sample are singly connected.

• For a arbitrary shaped sample

$$\rho = \frac{\pi t}{\ln(2)} \frac{R_{12,34} + R_{23,41}}{2} F$$

• For a symmetrical sample R<sub>12,34</sub>=R<sub>23,41</sub> and F=1



 $\rho \approx 4.532 \, tR_{12,34}$ 

$$R_{RH} = \frac{\rho}{t} \approx 4.532 R_{12,34}$$





Fig. The van der Pauw correction factor F versus Rr



Fig. Correction factor C versus d/l for contacts at the center and at the corners of the square.

$$o = CtR_{12,34}$$
  $R_{sh} = CR_{12,34}$ 

### **3.Measurement Errors and Precautions**

- Sample Size
- Minority/Majority Carrier Injection
- Probe Spacing

$$F_{S} \approx 1 + 1.082(1 - s_{2}/s_{m})$$

- Current
- Temperature
- Surface Preparation
- High Resistivity, High Sheet Resistance Materials

# 4. Wafer mapping

- Originally developed to characterize ion implantation uniformity.
- Parameter proportional to ion implant dose is measured across the sample, e.g., sheet resistance.
- Data converted into two or three dimensional countour maps.
- Most popular methods are four-point probe sheet resistance, modulated photoreflectance and optician densitometry.

## 4. Double implant

- A modified four probe method used for sheet resistance measurements.
- Two step method:
  - P-type (n-type) impurity implanted into n-type (p-type) substrate and wafer annealed. The sheet resistance is measured.
  - A second implantation is done, but without annealing. The sheet resistance is measured again, and compared to the first measurement.

E1>E2and  $\phi$ 1>  $\phi$ 2

## 4. Modulated Photoreflectance

Used to determine the implant dose of ion implanted wafers



Fig. Schematic diagram of the modulated photoreflectance apparatus.

## **4. Carrier Illumination**

- Determine junction depth
- Method similar to modulated photoreflectance.

$$\Delta n = \frac{q^2 \Delta N}{2K_s \varepsilon_o m^* \omega^2}$$

• Sensitive to the active dopant density and the profile abruptness

## **4.Optical Densitometry**

- Transparent substrate coated with a thin film consisting of a polymer carrier and an implant sensitive radiochromic dye.
- When this polymer-coated glass wafer is ion implanted, the film darkens.
- The amount of darkening depends on the implant energy, dose, and species.
- sensitive microdensitometer used.
- Used to measure doping density

## 5. Eddy current



Fig. (a) Schematic eddy current experimental arrangement, (b) practical implementation after Johnson and (c) schematic showing the eddy current coils and the thickness sound generator.

$$I_{T} = \frac{KV_{T}}{n^{2}} \int_{0}^{t} \sigma(x) dx = \frac{KV_{T}}{n^{2}} \frac{1}{R_{sh}} \quad t < \delta \quad \left(\delta = \sqrt{\rho/\pi f \mu_{0}}\right)_{31}$$

## 5. Eddy current

- For resistivity the sample thickness must be known.
- Two methods are used: differential capacitance probe and ultrasound.

$$t = s - (d_1 + d_2) = s - \varepsilon_o A(C_1^{-1} + C_2^{-1})$$



Fig. Capacitive wafer thickness and flatness measurement system.

## 6. Differential Hall Effect

Resistivity profile of a non-uniformly doped sample by measuring the resistivity, removing a thin layer of the sample, measuring the resistivity, removing, measuring, etc

$$R_{sh} = \frac{1}{q \int_{x}^{t} [n(x)\mu_{n}(x) + p(x)\mu_{p}(x)] dx}$$

$$\rho(x) = -\frac{1}{d[1/R_{sh}(x)]/dx} = \frac{R_{sh}^{2}(x)}{dR_{sh}(x)/dx} = \frac{R_{sh}(x)}{d[\ln(R_{sh}(x))]/dx}$$

## 6. Spreading Resistance Profiling



Fig. Spreading resistance bevel block and the beveled sample with probes and the probe path shown by the dashed line.

Spreading resistance for a semi-infinite sample:

$$R_{sp} = \frac{\rho}{4r}$$
 ohms

Spreading resistance for a hemispherical sample:

$$R_{sp} = \frac{\rho}{2\pi r}$$

34

spreading resistance with four-point probe measurements:

10/19/2012

$$R_{meas} = R_{cont} + R_{spread} = R_{cont} + \frac{\rho}{2r}C$$

## 7. Conclusions

- Four-point probe:
- Pros:
  - Well established use
  - Absolute measurement, no need for calibrated standards
  - In wafer mapping a powerful tool for process-monitoring
- Cons:
  - Causes surface damage and leaves metal deposits on the sample
- Eddy current:
- Pros:
  - Non-contact
  - Availability of commercial equipment
- Cons:
  - inability to determine sheet resistance of thin diffused or ion-implanted layers

## 7. Conclusions

#### • Modulated Photoreflectance:

- Pros:
  - Non-contact, non-destructive.
  - Commercially available.
  - Rapid measurements.
  - Data presented very informatively using contour plots.
  - Possible to measure through an oxide layer.
- Cons:
  - Measurement only qualitative thus requiring calibrated standards.
  - Profiling not possible.
  - Only average values obtained.
  - Laser drift and post-implant damage relaxation