Data Device Corporation

Considerations for 3-D Multi-Chip Modules for High Rel Applications

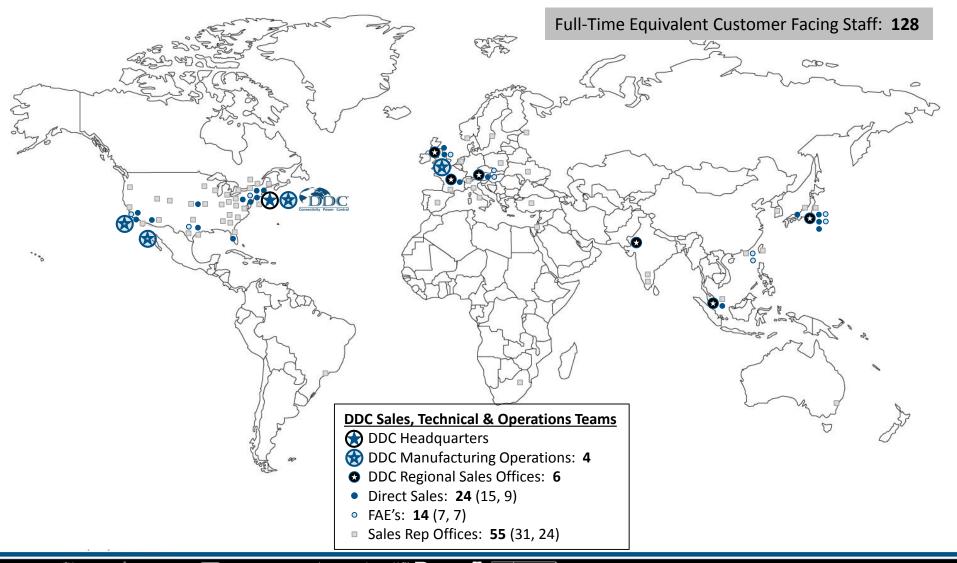
Joseph Castaldo, Product Line Director, Custom Microelectronics Solutions

Data Device Corporation

Your Solution Provider for... Connectivity, Power and Control

Headquarters – Bohemia, NY, USA

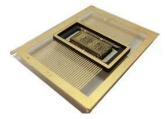
- Established 1964
- Manufacturing Operations NY, San Diego, UK & Mexico (>200,000 sq-ft)
- 700 Employees Worldwide


Local Support... Worldwide

- Direct Sales Offices USA, UK, Germany, France, India, Japan, Singapore
- Local Representatives Sales & Technical Support in 36 Countries

2

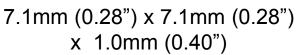
DDC Worldwide Sales Channel

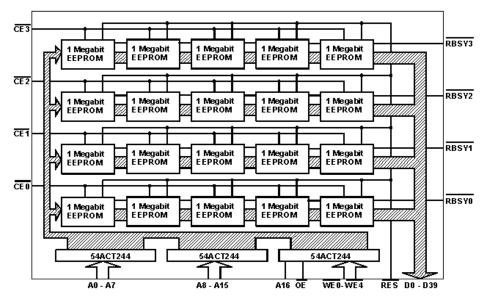

3

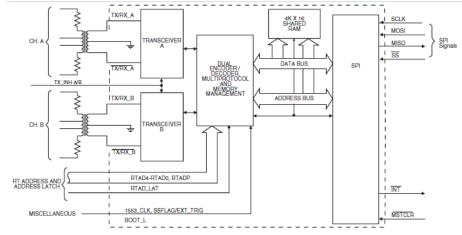
DDC

Examples of 3D MCMs

DDC is a leading producer of 3D MCMs for High Reliability Applications, having successfully delivered thousands of units to Mil and Space Platforms.


79C2040B 20 Megabit, EEPROM MCM


National Hybrid North Hills Poscal



Nano-ACE[™] MIL-STD-1553 Remote Terminal/Monitor

34.8mm (1.37") x 22.4mm (0.88") x 10.1mm (0.40")

Material Compatibility

MATERIAL	Thermal Conductivity (κ) W/cm-°K	MATERIAL	Thermal Conductivity (κ) W/cm-°K
METALS Silver Copper Gold Copper Tungsten Aluminum Molybdenum Brass Nickel Solder (SnPb) Steel Lead	W/cm-°K 4.3 4.0 2.97 2.48 2.3 1.4 1.1 0.92 0.57 0.5 0.4	INSULATORS Diamond AlN (Low O ₂ impurity) Silicon 6mbide (SiC) Beryllia (BeO) (2.8 g/cc) Beryllia (BeO) (1.8 g/cc) Alumina (Al ₂ O ₃) (3.8 g/cc) Alumina (Al ₂ O ₃) (3.5 g/cc) Alumina (95%) Alumina (92%) Glass Ceramic Thermal Greases	20 0 2.30 2.2 2.1 0.6 0.3 0.2 0.20 0.18 0.05 0.011
Stainless Steel Kovar Silver Filled Epoxy SEMICONDUCTORS Silicon Germanium Gallium Arsenide LIQUIDS Water Liquid Nitrogen (at 77°K) Liquid Helium (at 2°K) Freon 113 GASES Hydrogen Helium Oxygen Air	0.29 0.16 0.008 1.5 0.7 0.5 0.006 0.001 0.0001 0.0073 0.001 0.001 0.001 0.001 0.001 0.002 0.0002	Silicon Dioxide (SiO ₂) High-ĸ Molding Plastic Low-ĸ Molding Plastic Polyimide-Glass RTV Epoxy Glass (PC Board) BCB FR4 Polyimide Asbestos Teflon™ Glass Wool	0.01 0.02 0.005 0.0035 0.0031 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.0001

Source: ICE, "Roadmaps of Packaging Technology"

Figure 6-14. Thermal Conductivities of Various Materials (At Room Temperature Unless Noted Otherwise)

DESCRIPTION	MATERIAL	THICKNESS (cm)	κ (W/cm∙°K)	THERMAL RESISTANCE (°C/W)
Chip	Silicon	0.075	1.5	0.05
Die Attach	Silver-Filled Epoxy	0.0025	0.008	0.313
	Solder	0.005	0.51	0.0098
	Epoxy	0.0025	0.002	1.25
Ceramic Package	Alumina	0.08	0.2	0.4
	Copper Tungsten	0.08	2.48	0.032
	Aluminum Nitride	0.08	2.3	0.035
Interconnect	FR4 Board	0.25	0.002	125.0
	Polyimide	0.005	0.002	2.5
Heat Spreader	Copper	0.63	4.0	0.158
	Aluminum	0.63	2.3	0.274

Source: ICE, "Roadmaps of Packaging Technology"

Thermal Resistance (°C/W)	Temperature Drop (°C)
0.05	1
0.3	6
0.4	8
0.75	15
	(°C/W) 0.05 0.3 0.4

Source: ICE, "Roadmaps of Packaging Technology"

15810A

National Hybrid North Hills Pascal

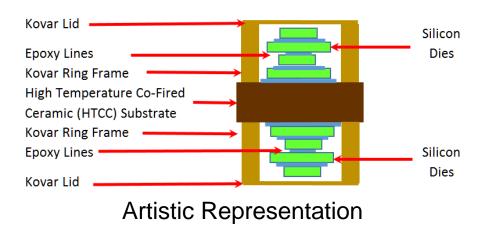
16453

15811A

2. Layer Contributions to Thermal Resistance and Temperature Drop for 20 Watts

Widely used Materials

Material	Thermal Conductivity W/cm·K
Gold	2.97
Molybdenum	1.40
Solder (SnPb)	0.57
Kovar	0.16
AIN (Low O ₂ impurity)	2.30
Beryllia (BeO) (2.8 g/cc)	2.1
Alumina (Al ₂ O ₃) (3.5 g/cc)	0.2
Glass Ceramic	0.05
FR4	0.002
Polyimide	0.002


National Hybrid North Hills Pascall

Material Considerations

20 Megabit, EEPROM MCM

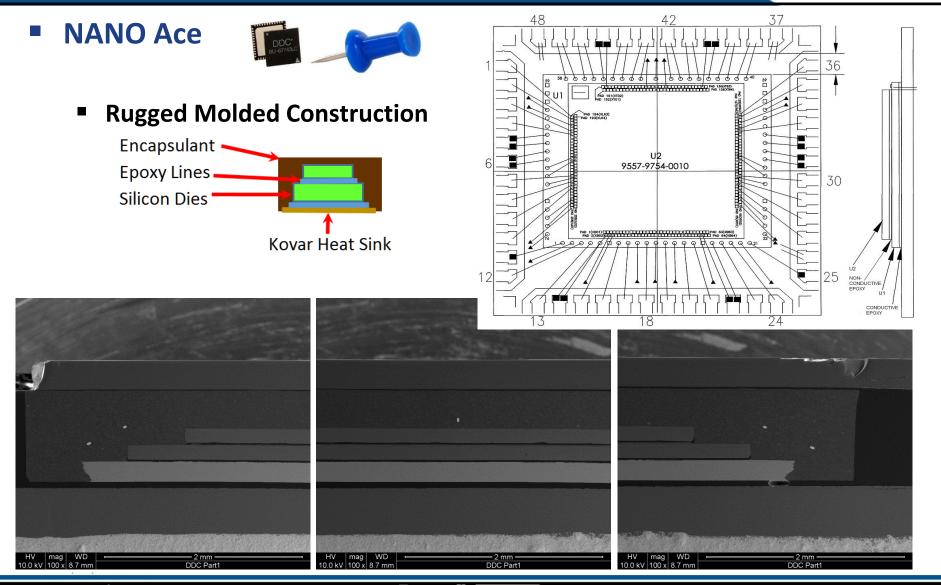
- Dual Cavity, Dual Stack,
 Cantilevered Construction
- Die and Materials are carefully selected for CTE compatibility
- TRL 9 achieved on multiple Space Missions

National Hybrid North Hills Poscall

Goal: Minimize CTE delta with consideration of design factors:

- Operating & Storage Range
- The greater the range the more CTE mismatch is a concern
- Critical material properties such as electrical and thermal conductivity of the materials
- How will the materials and form factor impact the stress on the connection?
- Does the supplier's computer analysis support the selected materials and proposed construction?

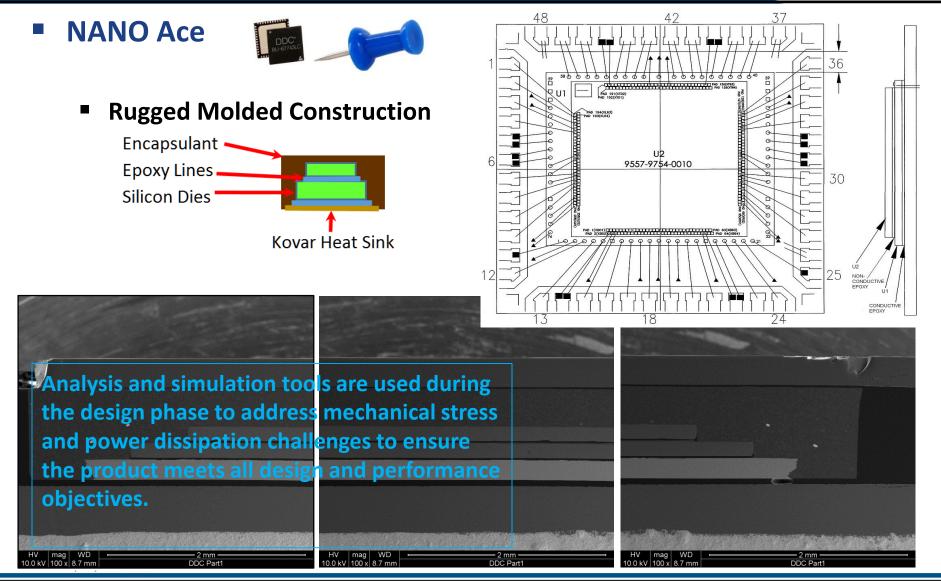
Qual Testing – Hermetics


Follows MIL-PRF-38534, Class H or K

		MIL-STD-883
Subgroup	Test	Test Method
1	Resistance to Soldering Heat	2036
1	External Visual	2009
1	Particle Impact Noise Detection	2020
1	Temperature Cycling	1010
1	Mechanical Shock	2002
1	Constant Acceleration	2001
1	Random Vibration	2026
1	Seal (Fine & Gross Leak)	1014
1	Particle Impact Noise Detection	2020
1	Visual Examination	1010
1	End-point Electrical	IAW ATP
2	1000 Hour Life Test	1005
3	Internal Gas Analysis	1018
4	Internal Visual	2017
4	Wire Bond Strength	2011
4	Element Shear	2019 or 2027

TECHNISCOMPORT

Material Compatibility


North Hills Poscal

DDC

9

Material Compatibility

TECHNOLOGIEN IN INCORPORATION INCOMPORATION INCOMPORATION SIGNAL PROCESSING CORP.

10

Material Compatibility cont.

- Materials with compatible Coefficients of Thermal Expansion (CTE) promotes long term reliability
- CTE of Materials

11

- High Temperature Co-Fired Ceramic (HTCC), typical CTE 6.9 7.5 ppm/K
- Does the selected material have the desirable Thermal Conductivity property? Thermal Conductivity (TC) for HTCC can range from 0.14 – 0.21W/cmK
- The TC of an epoxy will be driven by the choice of filler.

Material	Conductivity (W / cmK
Copper (Cu)	0.393
Gold (Au)	0.297
Silver (Ag)	0.418
Alumina (Al_2O_3)	0.030
Boron Nitride	0.600

- Silicon Semiconductors typically have a Thermal Conductivity of 1.5W/cmK
- Thermal Conductivity of (Al₂O₃) spacers between the die is 0.2W/cmK

THE ASSED THE ASSED THE NATIONAL HYDRIG AND SIGNAL PROCESSING CORP. POSSAL A CONTRACT SYSTEMS

Qualification Testing – Non-Hermetic Devices

 Moisture/Reflow Sensitivity Classification Test IAW J-STD-020D.1*

Step	Test
1	Base line Acoustic Microscopy
2	Acceptance Test IAW Acceptance Test Procedure
3	External Visual
4	Bake Out
5	Humidity Soak
6	Reflow
7	Cool Devices
8	Reflow
9	Cool Devices
10	Reflow
11	Post - Reflow cool down
12	External Visual
13	Acceptance Test IAW Acceptance Test Procedure
14	Acoustic Microscopy

High Temp Storage Life Test

Test	Conditions
Electrical Test	Over MIL Temp Range
High Temperature Storage	500 hours IAW JESD22-A-103
Visual Inspection	IAW IPC-A-610
Electrical Test	At Room Temperature within 96 Hours
	of exiting High Tempearture Storage
High Temperature Storage	500 hours IAW JESD22-A-103
Visual Inspection	IAW IPC-A-610
Electrical Test	Over MIL Temp Range within 96 hours
	of exiting High Temperature Storage

Low Temp Storage Life Test

Test	Conditions
Electrical Test	Over MIL Temp Range
Low Temperature Storage	168 hours IAW JESD22-A119
Visual Inspection	IAW IPC-A-610
Electrical Test	Over MIL Temp Range within 96 Hours
	of exiting Low Tempearture Storage

*Quantity of cycles dependent on the Operating range of the device.

THE PART OF THE PROPERTY AND THE INCOMPORTATION IN THE INCOMPORTATION SIGNAL PROCESSING CORP. PASSALL AND PROVIDE SYSTEMS

Temperature Cycling of Un-mounted SMT Devices IAW JESD22-A104

Step Test Acceptance Test 1 2 Temperature Cy **External Visual** 3 4 Acceptance Test 5 Temperature Cy 6 External Visual Acceptance Test 7 8 Temperature Cy 9 **External Visual**

10 Acceptance Test over MIL Temp F

13

THE PART OF THE PA

	1000	Hour	Life	Test	@	125°C	1
--	------	------	------	------	---	-------	---

Qualification Testing –	
Non-Hermetic Devices	cont

	Test		Conditions
st IAW Acceptance Test Procedure	Electri	cal Test	Over MIL Temp Range
cycle - 100 Cycles	Life Te	est	168 hours at 125°C
	Visual	Inspection	IAW IPC-A-610
st IAW Acceptance Test Procedure	Electri	cal Test	Over MIL Temp Range
Cycle - 300 Cycles	Life Te	st	500 hours at 125°C
	Visual	Inspection	IAW IPC-A-610
st IAW Acceptance Test Procedure	Electri	cal Test	Over MIL Temp Range
cycle - 300 Cycles	Life Te	st	500 hours at 125°C
	Visual	Inspection	IAW IPC-A-610
st IAW Acceptance Test Procedure Range	Electri	cal Test	Over MIL Temp Range

Summary

14

- Material compatibility is an important consideration when designing high reliability 2.5 / 3D Multi-Chip Modules
- Qualification of the design applying as many applicable Test Methods of MIL-PRF-38534 and JEDEC Standards is highly advisable
- Consider the long term viability of your supplier versus the life of your program
- Suppliers who build 2.5 / 3D Multi-Chip Modules on a continuous basis are best qualified to successfully deliver such MCMs while improving the size, weight and power (SWaP) of your product

Contact Data

Joseph Castaldo **Product Line Director, Custom Microelectronic Solutions Data Device Corporation 105 Wilbur Place Bohemia, NY 11716** Tel. (631)567-5600 x7417 Cell (516)965-5004 Email: castaldo@ddc-web.com Please contact me if you have any questions regarding how the

packaging technology presented herein can be applied to your project.

The following slides provide additional background information to the reader about Data Device Corporation

Markets/Solutions

	Markets				
	Defense	<u>Civil Aviation</u>	<u>Space</u>	Industrial	
Connectivity (Data Bus Solutions)	Market Leader in MIL-STD-1553 Components & Boards	ARINC 429 Boards & Components, ARINC 629 Plastic Optical Converter LRU	Class H & K MIL-STD-1553 Hybrid Microcircuits. Radiation Tolerant Transformers, Couplers, Memories, and Single Board Computers	High Temperature MIL-STD-1553 Components	
Power Control (Solid State Power Controllers; Power Supplies; Magnetics)	Largest Installed Base of SSPCs in Industry, Market Leader in Power Supplies	Flight Certified SSPCs, Leader in IFE&C Power Supplies	NASA-qualified Radiation Tolerant Magnetic Solutions	High Temperature Magnetics and Power Supplies for Sub-Sea and Harsh Environments	
Motion Control (Motor Controllers & Drives; Synchro/Resolver Conversion)	High Reliability Motor Controllers, Market Leader in Synchro/Resolver Conversion	High Reliability Motor Controllers, Incumbent RDC Design-ins	Radiation Tolerant Motor Controllers, RDCs and Reference Oscillators	Transportation, Factory Automation, High Temperature Position and Motor Control Solutions	

DDC's Field Proven Technology is on Virtually Every Military & Aerospace Platform

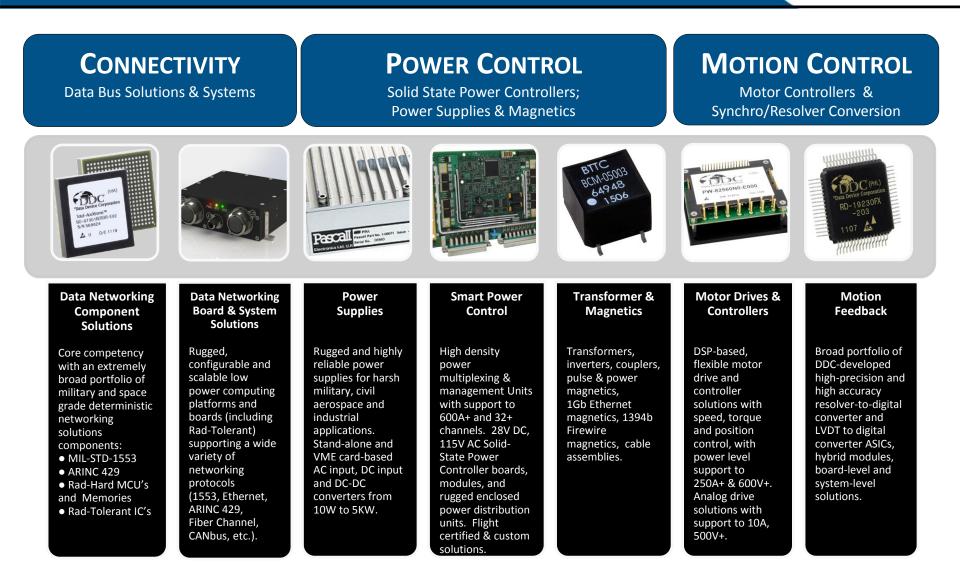
North Hills Processing Corp. Pascall

17

MER

Solutions

Expanding Our Capabilities



	Rationale	Business Model	Investment
National Hybrid Incorporated	Expands leadership position in MIL-STD-1553 products & technology	1553 products offered as part of DDC's overall Data Bus Component Portfolio	July 8, 2013 1 resource API Technologies Carve-out (Windber, PA)
BETA TRANSFORMER MEXICO, S. DE R.L. DE C.V.	Extends DDC's transformer manufacturing capabilities in low-cost geography	High-volume toroidal-wound transformer production capabilities in DLA certified facility	March 17, 2014 ~90 resources Acquisition of <i>Tecnicas y</i> <i>Servicios Internacionale</i> (Ensenada, Mexico)
Pascall XCEL Power Systems	Expands power solutions capabilities in aerospace, defense and industrial markets	Broad design and manufacturing capabilities for power supplies, RF Oscillators and OXCO's	June 30, 2015 ~130 resources <i>Emrise Electronics Ltd.</i> Carve-out (Isle of Wight, UK)
Microelectronics Division	Expands DDC's radiation tolerant IP and product capabilities for Space, Nuclear and Medical markets	Rad-Tolerant Memories, MCUs, Semiconductors, Packaging and Single Board Computers as part of DDC's overall product portfolio	April 22, 2016 ~38 resources <i>Maxwell Technologies</i> Carve-out (San Diego, CA)
	tional Hybrid corporated North Hills [™] Pasca	Your Solution Provider for	r Connectivity, Power, and Contro

Product Overview

Your Solution Provider for... Connectivity, Power, and Control

National Hybrid North Hills Pascall

19

DDC

DDC Product Overview

across a range of product segments.

20

Memories,

MCU's and

Semiconductor

Solutions

DDC

Single Board

Computer

Solutions

National Hybrid Signal Processing Corp. Pascall

Design & Manufacturing Leader

Product Capabilities

- ASIC Design and Fabless IC Manufacturing
 - Tier 1 Supply Chain for foundry, assembly and final test
- Metal & Ceramic Hybrid Design and Manufacturing
- Combined Flip Chip and Wire Bonded MCM
- Surface-Mount and Through-Hole PCB Design and Assembly
- Transformer, Magnetics Design and Manufacturing
- DO-178 Software development, DO-254 Hardware development

Engineering / Mechanical Capabilities

- Analog and Digital Design
- FPGA and ASIC Design
- Power Hybrid Design and Manufacturing
- Multi-Chip Module Design and Manufacturing
- Printed Circuit Board Design and Manufacturing
- Test and Evaluation
- Mechanical & Process Engineering
- Design Validation, Verification and Qualification
- Ruggedization and Thermal Management

21

DDC... The Depended Source

Life Cycle

- Uninterrupted Product Availability
- Backwards Hardware and Software Compatibility
- Configuration control & Lifecycle Management

Advanced Components

- Custom ASICs (Analog, Digital, Mixed Signal)
- Plastic Encapsulated Multi-Chip Modules
- MIL-PRF-38534 Hybrid Manufacturing

World Class Board and Box Level Assemblies

- Surface-Mount and Through-Hole Board Assembly
- IPC-A-610 Class 3
- Products Qualified for...
 - EMI, Vibration, Shock, Humidity, Extended Operating Temperatures

REFANSFORMER FECHNOLOGY DEPENDENT Incorporated A Signal Processing Corp. Poscall A COLL Dependention

Distinguished with top industry certifications for our design and manufacturing processes utilizing our clean room manufacturing and state-of-the-art production equipment.

Qualified Partner & Source

Certifications & Reliability

- ISO-9001:2008 Quality Certified
- ISO-14001:2004 Environmental Management System (San Diego, CA)
- Aerospace Quality Certified (Bohemia, NY and San Diego, CA)
 - AS9100 Rev. C Certified (N. America)
 - EN9100 Compliant (Europe)
 - JIS Q9100 Compliant (Japan)
- Hybrid Microcircuit & MCM Manufacturing Certified

North Hills Processing Corp.

- MIL-PRF-38534; Class D, G, H, and K Hybrid Screening (Bohemia, NY)
- MIL-PRF-38535; Class Q, V (San Diego, CA)

DDC

Customer Focused

Best In Class On-time Delivery & Quality Recognition

- Raytheon
 - 3 Star Supplier Excellence
- Lockheed Martin
 - Platinum Level Preferred Supplier
- General Atomics
 - Supplier Excellence
- L-3 Communication Systems-West
 - Platinum Award for Exceptional
 - Supplier Quality & Delivery Performance

- Honeywell Sensor and Guidance
 - Supplier Excellence
- BAE Gold Supplier Award
- MBDA SC21 Bronze Award

Data Device Corporation

North Hills Processing Corp. Pascall